版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省六安市智恒中學(xué)高一數(shù)學(xué)理月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.如右圖是張大爺晨練時(shí)所走的離家距離(y)與行走時(shí)間(x)之間的函數(shù)關(guān)系圖,若用黑點(diǎn)表示張大爺家的位置,則張大爺散步行走的路線可能是參考答案:C2.在上滿足,則的取值范圍是
(
) A.
B.
C. D.參考答案:D3.tan210°的值是()A.﹣ B. C.﹣ D.參考答案:D【考點(diǎn)】運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值.【專(zhuān)題】三角函數(shù)的求值.【分析】直接利用誘導(dǎo)公式把要求的式子化為tan30°,從而求得它的結(jié)果.【解答】解:tan210°=tan=tan30°=,故選D.【點(diǎn)評(píng)】本題主要考查利用誘導(dǎo)公式進(jìn)行化簡(jiǎn)求值,屬于基礎(chǔ)題.4.已知等腰三角形的面積為,頂角的正弦值是底角正弦值的倍,則該三角形一腰的長(zhǎng)為
A.
B.
C.2
D.
參考答案:A略5.函數(shù)(且)的圖像是下列圖像中的(
)A. B.C. D.參考答案:C【分析】將函數(shù)表示為分段函數(shù)的形式,由此確定函數(shù)圖像.【詳解】依題意,.由此判斷出正確的選項(xiàng)為C.故選C.【點(diǎn)睛】本小題主要考查三角函數(shù)圖像的識(shí)別,考查分段函數(shù)解析式的求法,考查同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.6.已知集合A={x|x>0},B={x|-1≤x≤2},則A∪B=()A.{x|x≥-1}
B.{x|x≤2}C.{x|0<x≤2}
D.{x|-1≤x≤2}參考答案:A解析:借助數(shù)軸易得A∪B={x|x≥-1}.7.存在函數(shù)f(x)滿足:對(duì)任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x參考答案:D【考點(diǎn)】函數(shù)的對(duì)應(yīng)法則;函數(shù)的概念及其構(gòu)成要素.【專(zhuān)題】計(jì)算題;轉(zhuǎn)化思想;綜合法;函數(shù)的性質(zhì)及應(yīng)用.【分析】在A、B中,分別取x=±1,由函數(shù)性質(zhì)能排除選項(xiàng)A和B;令|x+1|=t,t≥0,則x2+2x=t2﹣1,求出f(x)=x2﹣1,能排除選項(xiàng)C.【解答】解:在A中,取x=1,則f(1)=1,取x=﹣1,則f(1)=﹣1,不成立;在B中,令|x|=t,t≥0,x=±t,取x=1,則f(1)=3,取x=﹣1,則f(1)=﹣1,不成立;在C中,令|x+1|=t,t≥0,則x2+2x=t2﹣1,∴f(t)=t2﹣1,即f(x)=x2﹣1,故C不成立,D成立.故選:D.【點(diǎn)評(píng)】本題考查抽象函數(shù)的性質(zhì),是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.8.要得到y(tǒng)=3sin(2x+)的圖象只需將y=3sin2x的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位參考答案:C【考點(diǎn)】函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】根據(jù)左加右減的原則進(jìn)行左右平移即可.【解答】解:∵,∴只需將y=3sin2x的圖象向左平移個(gè)單位故選C.9.已知空間4個(gè)球,它們的半徑均為2,每個(gè)球都與其他三個(gè)球外切,另有一個(gè)小球與這4個(gè)球都外切,則這個(gè)小球的半徑為(
)A
B
C
D參考答案:B10.若兩圓x2+y2=m和x2+y2+6x﹣8y﹣11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是()A.(﹣∞,1)B.(121,+∞)C.[1,121]D.(1,121)參考答案:C略二、填空題:本大題共7小題,每小題4分,共28分11.已知sinα﹣cosβ=﹣,cosα+sinβ=,則sin(α﹣β)=
.參考答案:【考點(diǎn)】GQ:兩角和與差的正弦函數(shù).【分析】可將兩式平方相加,運(yùn)用同角的平方關(guān)系和兩角差的正弦公式,即可得到所求的值.【解答】解:∵sinα﹣cosβ=﹣,①cosα+sinβ=,②∴①2+②2,得(sin2α+cos2α)+(sin2β+cos2β)+2(sinβcosα﹣cosβsinα)=,即有2+2sin(β﹣α)=,即sin(β﹣α)=﹣,即sin(α﹣β)=.故答案為:.12.已知向量a,b滿足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,則a與b的夾角為_(kāi)_____________.參考答案:13.當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍是__________.參考答案:(1,2]設(shè),,在同一坐標(biāo)系中作出它們的圖象,如圖所示:若時(shí),不等式恒成立,則,解得,即實(shí)數(shù)的取值范圍是(1,2].14.已知是定義在∪上的奇函數(shù),當(dāng)時(shí),的圖象如右圖所示,那么的值域是
參考答案:略15.(15)與空間四邊形四個(gè)頂點(diǎn)距離相等的平面共有
參考答案:(15)7略16.設(shè)扇形的周長(zhǎng)為8cm,面積為4cm2,則扇形的圓心角的弧度數(shù)是
.參考答案:2【考點(diǎn)】G8:扇形面積公式.【分析】設(shè)扇形的圓心角的弧度數(shù)為α,半徑為r,弧長(zhǎng)為l,面積為S,由面積公式和周長(zhǎng)可得到關(guān)于l和r的方程組,求出l和r,由弧度的定義求α即可.【解答】解:S=(8﹣2r)r=4,r2﹣4r+4=0,r=2,l=4,|α|==2.故答案為:2.17.設(shè)為等比數(shù)列的前項(xiàng)和,,則
▲
.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知函數(shù)f(x)=mx2﹣2mx+n(m>0)在區(qū)間[1,3]上的最大值為5,最小值為1,設(shè). (Ⅰ)求m、n的值; (Ⅱ)證明:函數(shù)g(x)在[,+∞)上是增函數(shù); (Ⅲ)若函數(shù)F(x)=g(2x)﹣k2x在x∈[﹣1,1]上有零點(diǎn),求實(shí)數(shù)k的取值范圍. 參考答案:【考點(diǎn)】二次函數(shù)的性質(zhì). 【專(zhuān)題】函數(shù)思想;綜合法;函數(shù)的性質(zhì)及應(yīng)用. 【分析】(Ⅰ)根據(jù)二次函數(shù)的單調(diào)性求出f(1)=1,f(3)=5,求出m,n的值即可; (Ⅱ)根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性即可; (Ⅲ)問(wèn)題轉(zhuǎn)化為k=1+2﹣2在x∈[﹣1,1]上有解,通過(guò)換元得到k=2t2﹣2t+1在t∈[,2]上有解,求出k的范圍即可. 【解答】解:(Ⅰ)f(x)=m(x﹣1)2﹣m+n(m>0), ∵m>0,∴,解得:, (Ⅱ)由已知得g(x)=x+﹣2, 設(shè)≤x1<x2, ∵g(x1)﹣g(x2)=(x1﹣x2)(1﹣)=, ∵≤x1<x2,∴x1﹣x2<0,2<x1x2,即x1x2﹣2>0, ∴g(x1)﹣g(x2)<0,即g(x1)<g(x2), ∴函數(shù)g(x)在[,+∞)上是增函數(shù); (Ⅲ)函數(shù)F(x)=g(2x)﹣k2x在x∈[﹣1,1]上有零點(diǎn), 即g(2x)﹣k2x=0在x∈[﹣1,1]上有解, 即k=1+2﹣2在x∈[﹣1,1]上有解, 令t=,則k=2t2﹣2t+1, ∵x∈[﹣1,1],∴t∈[,2], 即k=2t2﹣2t+1在t∈[,2]上有解, 2k=2k2﹣2t+1=2+,(≤t≤2), ∴≤k≤5, ∴k的范圍是[,5]. 【點(diǎn)評(píng)】本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問(wèn)題,考查換元思想,是一道中檔題. 19.已知為常數(shù),若求的值。參考答案:略20.已知集合,集合(1)求;(2)若集合,且,求實(shí)數(shù)的取值范圍.參考答案:略21.已知平面直角坐標(biāo)系內(nèi)三點(diǎn)A、B、C在一條直線上,=(﹣2,m),=(n,1),=(5,﹣1),且⊥,其中O為坐標(biāo)原點(diǎn).(1)求實(shí)數(shù)m,n的值;(2)設(shè)△OAC的重心為G,若存在實(shí)數(shù)λ,使=λ,試求∠AOC的大?。畢⒖即鸢福骸究键c(diǎn)】數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系;平面向量數(shù)量積的坐標(biāo)表示、模、夾角.【分析】(1)由已知向量的坐標(biāo)求出的坐標(biāo),由∥列關(guān)于m,n的方程組,再由⊥得到關(guān)于m,n的另一方程組,聯(lián)立后求得m,n的值;(2)由△OAC的重心為G,結(jié)合=λ可知B為AC的中點(diǎn),由中點(diǎn)坐標(biāo)結(jié)合(1)中的結(jié)果得到m,n的值,得到的坐標(biāo),然后代入平面向量的數(shù)量積公式求得∠AOC的大?。窘獯稹拷猓海?)由于A、B、C三點(diǎn)在一條直線上,則∥,而,,∴7(1﹣m)﹣(﹣1﹣m)(n+2)=0,即9﹣5m+mn+n=0,又,∴﹣2n+m=0,聯(lián)立方程組,解得或;(2)若存在實(shí)數(shù)λ,使=λ,則B為AC的中點(diǎn),故.∴,.∴,∴.22.(本題10分,第(1)小題4分,第(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《西方法律思想史》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《生態(tài)工程學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《基礎(chǔ)工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《電子技術(shù)》2022-2023學(xué)年期末試卷
- 沈陽(yáng)理工大學(xué)《信號(hào)變換》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《計(jì)算機(jī)網(wǎng)絡(luò)與通信》2022-2023學(xué)年期末試卷
- 溫病息風(fēng)止痙法
- 消毒設(shè)備維護(hù)管理
- 沈陽(yáng)理工大學(xué)《光纖傳感技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣告合同高空作業(yè)免責(zé)協(xié)議書(shū)
- 發(fā)現(xiàn)生活中的美-完整版PPT
- 小學(xué)道德與法治人教三年級(jí)上冊(cè)第三單元安全護(hù)我成長(zhǎng)-《遭遇陌生人》教案
- CAMDS操作方法及使用技巧
- 平狄克《微觀經(jīng)濟(jì)學(xué)》(第8版)筆記和課后習(xí)題詳解
- 最優(yōu)化理論與算法課程教學(xué)大綱
- 2022年湖北省武漢市江岸區(qū)育才第二小學(xué)六上期中數(shù)學(xué)試卷
- (最新版)中小學(xué)思政課一體化建設(shè)實(shí)施方案三篇
- PSA提氫裝置操作規(guī)程
- 水工隧洞概述(67頁(yè)清楚明了)
- 計(jì)算機(jī)維修工技能考核試卷
- 2020年四川省德陽(yáng)市高三一診考試地理試卷(Word版,含答案)
評(píng)論
0/150
提交評(píng)論