福建省廈門市部分校2024屆中考數(shù)學(xué)仿真試卷含解析_第1頁
福建省廈門市部分校2024屆中考數(shù)學(xué)仿真試卷含解析_第2頁
福建省廈門市部分校2024屆中考數(shù)學(xué)仿真試卷含解析_第3頁
福建省廈門市部分校2024屆中考數(shù)學(xué)仿真試卷含解析_第4頁
福建省廈門市部分校2024屆中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省廈門市部分校2024屆中考數(shù)學(xué)仿真試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.2.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.3.?dāng)?shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.34.把8a3﹣8a2+2a進(jìn)行因式分解,結(jié)果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)25.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a(chǎn)=2,b=3 B.a(chǎn)=-2,b=-3C.a(chǎn)=-2,b=3 D.a(chǎn)=2,b=-36.如圖是一個由4個相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.7.如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經(jīng)過圓心,則折痕的長度為()A. B.2 C. D.8.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.109.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:110.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,利用標(biāo)桿測量建筑物的高度,已知標(biāo)桿高1.2,測得,則建筑物的高是__________.12.已知整數(shù)k<5,若△ABC的邊長均滿足關(guān)于x的方程,則△ABC的周長是.13.若不等式(a﹣3)x>1的解集為,則a的取值范圍是_____.14.如圖,一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0),則光線從點A到點B經(jīng)過的路徑長為_____.15.在△ABC中,點D在邊BC上,且BD:DC=1:2,如果設(shè)=,=,那么等于__(結(jié)果用、的線性組合表示).16.如圖,五邊形是正五邊形,若,則__________.17.若反比例函數(shù)的圖象與一次函數(shù)y=ax+b的圖象交于點A(﹣2,m)、B(5,n),則3a+b的值等于_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設(shè)點P的橫坐標(biāo)為m.(1)求拋物線解析式并求出點D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當(dāng)△CPE是等腰三角形時,請直接寫出m的值.19.(5分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式.求機場大巴與貨車相遇地到機場C的路程.20.(8分)某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?2輛A,B兩種型號客車作為交通工具.下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù)設(shè)學(xué)校租用A型號客車x輛,租車總費用為y元.求y與x的函數(shù)解析式,請直接寫出x的取值范圍;若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最???最省的總費用是多少?21.(10分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.22.(10分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.23.(12分)計算:(﹣1)4﹣2tan60°+.24.(14分)解分式方程:x+1x-1-

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】【分析】根據(jù)主視圖是從幾何體正面看得到的圖形,認(rèn)真觀察實物,可得這個幾何體的主視圖為長方形上面一個三角形,據(jù)此即可得.【詳解】觀察實物,可知這個幾何體的主視圖為長方體上面一個三角形,只有A選項符合題意,故選A.【名師點睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關(guān)鍵.2、A【解析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.3、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.4、C【解析】

首先提取公因式2a,進(jìn)而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點睛】本題因式分解中提公因式法與公式法的綜合運用.5、B【解析】分析:根據(jù)整式的乘法,先還原多項式,然后對應(yīng)求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關(guān)系,利用它們之間的互逆運算的關(guān)系是解題關(guān)鍵.6、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的線畫虛線.本題從左面看有兩列,左側(cè)一列有兩層,右側(cè)一列有一層.7、C【解析】

過O作OC⊥AB,交圓O于點D,連接OA,由垂徑定理得到C為AB的中點,再由折疊得到CD=OC,求出OC的長,在直角三角形AOC中,利用勾股定理求出AC的長,即可確定出AB的長.【詳解】過O作OC⊥AB,交圓O于點D,連接OA,由折疊得到CD=OC=OD=1cm,在Rt△AOC中,根據(jù)勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,則AB=2AC=2cm.故選C.【點睛】此題考查了垂徑定理,勾股定理,以及翻折的性質(zhì),熟練掌握垂徑定理是解本題的關(guān)鍵.8、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.【點睛】本題考查的知識點是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.9、B【解析】

可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.10、A【解析】

此題考查了概率公式的應(yīng)用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經(jīng)檢驗,a=1是原分式方程的解,故本題選A.二、填空題(共7小題,每小題3分,滿分21分)11、10.5【解析】

先證△AEB∽△ABC,再利用相似的性質(zhì)即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質(zhì).利用相似的性質(zhì)列出含所求邊的比例式是解題的關(guān)鍵.12、6或12或1.【解析】

根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關(guān)于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關(guān)系,分類思想的應(yīng)用.【詳解】請在此輸入詳解!13、.【解析】∵(a?3)x>1的解集為x<,∴不等式兩邊同時除以(a?3)時不等號的方向改變,∴a?3<0,∴a<3.故答案為a<3.點睛:本題考查了不等式的性質(zhì):在不等式的兩邊同時乘以或除以同一個負(fù)數(shù)不等號的方向改變.本題解不等號時方向改變,所以a-3小于0.14、2【解析】

延長AC交x軸于B′.根據(jù)光的反射原理,點B、B′關(guān)于y軸對稱,CB=CB′.路徑長就是AB′的長度.結(jié)合A點坐標(biāo),運用勾股定理求解.【詳解】解:如圖所示,延長AC交x軸于B′.則點B、B′關(guān)于y軸對稱,CB=CB′.作AD⊥x軸于D點.則AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光線從點A到點B經(jīng)過的路徑長為2.考點:解直角三角形的應(yīng)用點評:本題考查了直角三角形的有關(guān)知識,同時滲透光學(xué)中反射原理,構(gòu)造直角三角形是解決本題關(guān)鍵15、【解析】

根據(jù)三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.【點睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.16、72【解析】分析:延長AB交于點F,根據(jù)得到∠2=∠3,根據(jù)五邊形是正五邊形得到∠FBC=72°,最后根據(jù)三角形的外角等于與它不相鄰的兩個內(nèi)角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質(zhì)和正五邊形的性質(zhì),正確把握五邊形的性質(zhì)是解題關(guān)鍵.17、0【解析】分析:本題直接把點的坐標(biāo)代入解析式求得之間的關(guān)系式,通過等量代換可得到的值.詳解:分別把A(?2,m)、B(5,n),代入反比例函數(shù)的圖象與一次函數(shù)y=ax+b得?2m=5n,?2a+b=m,5a+b=n,綜合可知5(5a+b)=?2(?2a+b),25a+5b=4a?2b,21a+7b=0,即3a+b=0.故答案為:0.點睛:屬于一次函數(shù)和反比例函數(shù)的綜合題,考查反比例函數(shù)與一次函數(shù)的交點問題,比較基礎(chǔ).三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+2x+3,D點坐標(biāo)為();(2)當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標(biāo);

(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;

(3)討論:當(dāng)PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點:靈活運用二次函數(shù)性質(zhì),運用數(shù)形結(jié)合思想.19、(1)連接A、B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時間為h;(2)y=﹣80x+60(0≤x≤);(3)機場大巴與貨車相遇地到機場C的路程為km.【解析】

(1)根據(jù)可求出連接A、B兩市公路的路程,再根據(jù)貨車h行駛20km可求出貨車行駛60km所需時間;(2)根據(jù)函數(shù)圖象上點的坐標(biāo),利用待定系數(shù)法即可求出機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式;(3)利用待定系數(shù)法求出線段ED對應(yīng)的函數(shù)表達(dá)式,聯(lián)立兩函數(shù)表達(dá)式成方程組,通過解方程組可求出機場大巴與貨車相遇地到機場C的路程.【詳解】解:(1)60+20=80(km),(h)∴連接A.

B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時間為h.(2)設(shè)所求函數(shù)表達(dá)式為y=kx+b(k≠0),將點(0,60)、代入y=kx+b,得:解得:∴機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式為(3)設(shè)線段ED對應(yīng)的函數(shù)表達(dá)式為y=mx+n(m≠0)將點代入y=mx+n,得:解得:∴線段ED對應(yīng)的函數(shù)表達(dá)式為解方程組得∴機場大巴與貨車相遇地到機場C的路程為km.【點睛】本題考查一次函數(shù)的應(yīng)用,掌握待定系數(shù)法求函數(shù)關(guān)系式是解題的關(guān)鍵,本題屬于中檔題,難度不大,但過程比較繁瑣,因此再解決該題是一定要細(xì)心.20、(1)21≤x≤62且x為整數(shù);(2)共有25種租車方案,當(dāng)租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【解析】

(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關(guān)系式,再根據(jù)AB兩種車至少要能坐1441人即可得取x的取值范圍;(2)由總費用不超過21940元可得關(guān)于x的不等式,解不等式后再利用函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x為整數(shù);(2)由題意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x為整數(shù),∴共有25種租車方案,∵k=100>0,∴y隨x的增大而增大,當(dāng)x=21時,y有最小值,y最?。?00×21+17360=19460,故共有25種租車方案,當(dāng)租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【點睛】本題考查了一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用等,解題的關(guān)鍵是理解題意,正確列出函數(shù)關(guān)系式,會利用函數(shù)的性質(zhì)解決最值問題.21、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論