2023-2024學年福州七中高三第四次模擬考試數學試卷含解析_第1頁
2023-2024學年福州七中高三第四次模擬考試數學試卷含解析_第2頁
2023-2024學年福州七中高三第四次模擬考試數學試卷含解析_第3頁
2023-2024學年福州七中高三第四次模擬考試數學試卷含解析_第4頁
2023-2024學年福州七中高三第四次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福州七中高三第四次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數的圖象向左平移個單位長度,得到函數的圖象.其中假命題的個數是()A.0 B.1 C.2 D.32.已知函數的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數的取值范圍是()A. B. C. D.3.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數的值為()A.1 B.2 C.-1 D.-24.若實數滿足的約束條件,則的取值范圍是()A. B. C. D.5.已知定義在上的奇函數滿足:(其中),且在區(qū)間上是減函數,令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.6.已知正項等比數列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.47.設,為非零向量,則“存在正數,使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件8.函數的圖象向右平移個單位得到函數的圖象,并且函數在區(qū)間上單調遞增,在區(qū)間上單調遞減,則實數的值為()A. B. C.2 D.9.要得到函數的導函數的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍10.已知雙曲線()的漸近線方程為,則()A. B. C. D.11.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數列,且,則橢圓的離心率為A. B. C. D.12.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.14.在的展開式中,的系數為______用數字作答15.已知函數f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.16.若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中,為自然對數的底數.(1)當時,證明:對;(2)若函數在上存在極值,求實數的取值范圍。18.(12分)設函數,是函數的導數.(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.19.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大?。唬á颍┤?,求面積的取值范圍.20.(12分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.21.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大??;(2)求點到平面的距離.22.(10分)已知x∈R,設,,記函數.(1)求函數取最小值時x的取值范圍;(2)設△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

結合不等式、三角函數的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數單調性的應用,考查了三角函數圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.2、A【解析】

可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數的增減性,結合函數圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據題意畫出函數大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數形結合思想求解函數交點問題,導數研究函數增減性,找準臨界是解題的關鍵,屬于中檔題3、D【解析】

由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.4、B【解析】

根據所給不等式組,畫出不等式表示的可行域,將目標函數化為直線方程,平移后即可確定取值范圍.【詳解】實數滿足的約束條件,畫出可行域如下圖所示:將線性目標函數化為,則將平移,平移后結合圖像可知,當經過原點時截距最小,;當經過時,截距最大值,,所以線性目標函數的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數取值范圍的求法,屬于基礎題.5、A【解析】因為,所以,即周期為4,因為為奇函數,所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數對稱性代數表示(1)函數為奇函數,函數為偶函數(定義域關于原點對稱);(2)函數關于點對稱,函數關于直線對稱,(3)函數周期為T,則6、D【解析】

由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.7、D【解析】

充分性中,由向量數乘的幾何意義得,再由數量積運算即可說明成立;必要性中,由數量積運算可得,不一定有正數,使得,所以不成立,即可得答案.【詳解】充分性:若存在正數,使得,則,,得證;必要性:若,則,不一定有正數,使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數量積的運算,向量數乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.8、C【解析】由函數的圖象向右平移個單位得到,函數在區(qū)間上單調遞增,在區(qū)間上單調遞減,可得時,取得最大值,即,,,當時,解得,故選C.點睛:本題主要考查了三角函數圖象的平移變換和性質的靈活運用,屬于基礎題;據平移變換“左加右減,上加下減”的規(guī)律求解出,根據函數在區(qū)間上單調遞增,在區(qū)間上單調遞減可得時,取得最大值,求解可得實數的值.9、D【解析】

先求得,再根據三角函數圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復合函數導數的計算,考查誘導公式,考查三角函數圖像變換,屬于基礎題.10、A【解析】

根據雙曲線方程(),確定焦點位置,再根據漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.11、D【解析】

如圖所示,設依次構成等差數列,其公差為.根據橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.12、A【解析】

設出A,B的坐標,利用導數求出過A,B的切線的斜率,結合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質,考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數,三人都收到禮物包含的基本事件個數.由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數,三人都收到禮物包含的基本事件個數.則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎題.14、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數.【詳解】二項展開式的通項為令得的系數為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.15、0【解析】

由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯立①②解得:..故答案為:0.【點睛】本題考查導數的幾何意義,屬于基礎題.16、【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!驹斀狻坑深}意,,當且僅當時等號成立,所以,當且僅當時取等號,所以當時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數;②和(或積)為定值;③等號取得的條件。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)利用導數說明函數的單調性,進而求得函數的最小值,得到要證明的結論;(2)問題轉化為導函數在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數的單調性及值域,從而得到結論.法二:構造函數,利用函數的導數判斷函數的單調性求得函數的值域,再利用零點存在定理說明函數存在極值.【詳解】(1)當時,,于是,.又因為,當時,且.故當時,,即.所以,函數為上的增函數,于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當時,為上的增函數,注意到,,所以,存在唯一實數,使得成立.于是,當時,,為上的減函數;當時,,為上的增函數;所以為函數的極小值點;②當時,在上成立,所以在上單調遞增,所以在上沒有極值;③當時,在上成立,所以在上單調遞減,所以在上沒有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數在上存在極值,則在上存在零點.即在上存在零點.設,,則由單調性的性質可得為上的減函數.即的值域為,所以,當實數時,在上存在零點.下面證明,當時,函數在上存在極值.事實上,當時,為上的增函數,注意到,,所以,存在唯一實數,使得成立.于是,當時,,為上的減函數;當時,,為上的增函數;即為函數的極小值點.綜上所述,當時,函數在上存在極值.【點睛】本題考查利用導數研究函數的最值,涉及函數的單調性,導數的應用,函數的最值的求法,考查構造法的應用,是一道綜合題.18、(1)證明見解析(2)【解析】

(1)先利用導數的四則運算法則和導數公式求出,再由函數的導數可知,函數在上單調遞增,在上單調遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉化為,構造函數,利用導數討論研究其在上的單調性,由,即可求出的取值范圍.【詳解】(1)若,則,,設,則,,,故函數是奇函數.當時,,,這時,又函數是奇函數,所以當時,.綜上,當時,函數單調遞增;當時,函數單調遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設,.故當時,,又,所以當時,,滿足題意;當時,有,與條件矛盾,舍去;當時,令,則,又,故在區(qū)間上有無窮多個零點,設最小的零點為,則當時,,因此在上單調遞增.,所以.于是,當時,,得,與條件矛盾.故的取值范圍是.【點睛】本題主要考查導數的四則運算法則和導數公式的應用,以及利用導數研究函數的單調性和最值,涉及分類討論思想和放縮法的應用,難度較大,意在考查學生的數學建模能力,數學運算能力和邏輯推理能力,屬于較難題.19、(Ⅰ);(Ⅱ)【解析】

(I)根據,利用二倍角公式得到,再由輔助角公式得到,然后根據正弦函數的性質求解.(Ⅱ)根據(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所以,當且僅當取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.20、(1)(2)直線過定點【解析】

設.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論