版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省淮北市相山區(qū)師范大學(xué)附屬實(shí)驗(yàn)中學(xué)2023-2024學(xué)年高三第二次診斷性檢測數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.52.已知函數(shù)是上的減函數(shù),當(dāng)最小時,若函數(shù)恰有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.3.過橢圓的左焦點(diǎn)的直線過的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.4.已知向量與的夾角為,,,則()A. B.0 C.0或 D.5.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.6.在展開式中的常數(shù)項(xiàng)為A.1 B.2 C.3 D.77.由曲線圍成的封閉圖形的面積為()A. B. C. D.8.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.9.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進(jìn)行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實(shí)上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路10.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]11.已知集合,則集合()A. B. C. D.12.已知雙曲線的離心率為,拋物線的焦點(diǎn)坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機(jī)挑選的,當(dāng)謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.14.已知的終邊過點(diǎn),若,則__________.15.若x,y滿足,且y≥?1,則3x+y的最大值_____16.設(shè)的內(nèi)角的對邊分別為,,.若,,,則_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列,其前項(xiàng)和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.18.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a19.(12分)已知函數(shù).當(dāng)時,求不等式的解集;,,求a的取值范圍.20.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin21.(12分)已知橢圓的右頂點(diǎn)為,為上頂點(diǎn),點(diǎn)為橢圓上一動點(diǎn).(1)若,求直線與軸的交點(diǎn)坐標(biāo);(2)設(shè)為橢圓的右焦點(diǎn),過點(diǎn)與軸垂直的直線為,的中點(diǎn)為,過點(diǎn)作直線的垂線,垂足為,求證:直線與直線的交點(diǎn)在橢圓上.22.(10分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由對數(shù)運(yùn)算法則和等比數(shù)列的性質(zhì)計(jì)算.【詳解】由題意.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運(yùn)算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.2、A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時,,之后將函數(shù)零點(diǎn)個數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時,,函數(shù)恰有兩個零點(diǎn)等價(jià)于方程有兩個實(shí)根,等價(jià)于函數(shù)與的圖像有兩個交點(diǎn).畫出函數(shù)的簡圖如下,而函數(shù)恒過定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.3、D【解析】
求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來求解,考查計(jì)算能力,屬于中等題.4、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算和向量的模長平方等于向量的平方,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.5、C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)?,所以有解,即有解,所以,得,,所以,又因?yàn)?,所以,即,可化為,因?yàn)?,所以的解集包含,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,6、D【解析】
求出展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問題得解。【詳解】展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。7、A【解析】
先計(jì)算出兩個圖像的交點(diǎn)分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時注意積分區(qū)間和被積函數(shù)的選取.8、A【解析】
設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),,,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點(diǎn)的軌跡方程,將和轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標(biāo)系,設(shè),,,由,可得,即,化簡得點(diǎn)的軌跡方程為,則,則轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,,,轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,.故選:A.【點(diǎn)睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.9、D【解析】
甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點(diǎn)睛】本題主要考查了判斷與推理的問題,重點(diǎn)是找到三人中都提到的內(nèi)容進(jìn)行分類討論,屬于基礎(chǔ)題型.10、D【解析】
設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點(diǎn)睛】本題考查了向量的運(yùn)算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎(chǔ)題.12、A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用相互獨(dú)立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨(dú)立的,故為故答案為:【點(diǎn)睛】本題考查了相互獨(dú)立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.14、【解析】
】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點(diǎn),若,.即答案為-2.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.15、5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過點(diǎn)時,取最大值5.故答案為:5【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.16、或【解析】試題分析:由,則可運(yùn)用同角三角函數(shù)的平方關(guān)系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點(diǎn):運(yùn)用正弦定理解三角形.(注意多解的情況判斷)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(dāng)(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當(dāng)時,,即,得,①當(dāng)時,,即,得,②當(dāng)時,,即,得,③②①,得,③②,得,解得.代入①式,得.此時(),所以,是公比為1的等比數(shù)列,故.(3)證明:若,由,得,又,解得.由,,,,代入得,所以,,成等差數(shù)列,由,得,兩式相減得:即所以相減得:所以所以,因?yàn)?,所以,即?shù)列是等差數(shù)列.18、(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計(jì)算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,裂項(xiàng)求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.19、(1);(2).【解析】
(1)當(dāng)時,,①當(dāng)時,,令,即,解得,②當(dāng)時,,顯然成立,所以,③當(dāng)時,,令,即,解得,綜上所述,不等式的解集為.(2)因?yàn)?,因?yàn)?,有成立,所以只需,解得,所以a的取值范圍為.【點(diǎn)睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.20、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運(yùn)用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題解析:(1)由cosB應(yīng)用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因?yàn)閎=32得34又因?yàn)閍c≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關(guān)系定理可知綜上a+c∈(考點(diǎn):1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應(yīng)用.21、(1)(2)見解析【解析】
(1)直接求出直線方程,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),從而可得直線方程,得其與軸交點(diǎn)坐標(biāo);(2)設(shè),則,求出直線和的方程,從而求得兩直線的交點(diǎn)坐標(biāo),證明此交點(diǎn)在橢圓上,即此點(diǎn)坐標(biāo)適合橢圓方程.代入驗(yàn)證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關(guān)系的綜合,(1)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市公園活動場地租賃協(xié)議
- 2024年農(nóng)產(chǎn)品更新-豆粕飼料購銷協(xié)議范本
- 2024內(nèi)部資料保護(hù)及競業(yè)禁止協(xié)議
- 交通運(yùn)輸揚(yáng)塵管控方案
- 母嬰店國慶節(jié)促銷的詳細(xì)方案
- 高校學(xué)生信息保護(hù)意識提升方案
- 2024年MLB棒球帽品牌推廣合作合同
- 2024年個人借款協(xié)議詳本
- 2024年國際貨物買賣運(yùn)輸及保險(xiǎn)合同
- 智能家居設(shè)備技術(shù)支持合同
- “雙減”背景下的小學(xué)英語作業(yè)優(yōu)化設(shè)計(jì)PPT
- GB/T 34474.1-2017鋼中帶狀組織的評定第1部分:標(biāo)準(zhǔn)評級圖法
- GB/T 25071-2010珠寶玉石及貴金屬產(chǎn)品分類與代碼
- 核醫(yī)學(xué)在血液與淋巴系統(tǒng)中的應(yīng)用
- 第一章 符號的世界和符號學(xué)方法
- GB/T 10362-2008糧油檢驗(yàn)玉米水分測定
- Ch1數(shù)值分析與科學(xué)計(jì)算引論
- 學(xué)情分析方案《王戎不取道旁李》
- 聞王昌齡左遷龍標(biāo)遙有此寄ppt復(fù)習(xí)課程
- 優(yōu)秀-敦煌壁畫課件
- 傅青主女科課件
評論
0/150
提交評論