版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省襄陽市重點中學(xué)2023-2024學(xué)年高考臨考沖刺數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.602.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過檢測將其區(qū)分開來,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件類產(chǎn)品或者檢測出3件類產(chǎn)品時,檢測結(jié)束,則第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為()A. B. C. D.3.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.4.公元前世紀,古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領(lǐng)先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米5.設(shè)變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.26.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種7.“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關(guān)系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設(shè)成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是()A.這五年,出口總額之和比進口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進口增速最快D.這五年,出口增速前四年逐年下降8.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.109.若函數(shù)在時取得極值,則()A. B. C. D.10.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.111.函數(shù)的圖像大致為()A. B.C. D.12.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結(jié)論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知,則______,______.14.設(shè)的內(nèi)角的對邊分別為,,.若,,,則_____________15.過動點作圓:的切線,其中為切點,若(為坐標原點),則的最小值是__________.16.在平面直角坐標系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點從左到右依次為,,…,若點的橫坐標為1,則點的橫坐標為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)△ABC的內(nèi)角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.18.(12分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.19.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設(shè)為的中點,且,的平分線交于點,求線段的長.20.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.21.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點,使二面角的平面角的余弦值為.22.(10分)在中,角,,所對的邊分別為,,,且.求的值;設(shè)的平分線與邊交于點,已知,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題2、D【解析】
根據(jù)分步計數(shù)原理,由古典概型概率公式可得第一次檢測出類產(chǎn)品的概率,不放回情況下第二次檢測出類產(chǎn)品的概率,即可得解.【詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測出類產(chǎn)品的概率為;故第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為;故選:D.【點睛】本題考查了分步乘法計數(shù)原理的應(yīng)用,古典概型概率計算公式的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設(shè)切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.4、D【解析】
根據(jù)題意,是一個等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應(yīng)用,還考查了建模解模的能力,屬于中檔題.5、B【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.6、C【解析】
根據(jù)題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
根據(jù)統(tǒng)計圖中數(shù)據(jù)的含義進行判斷即可.【詳解】對A項,由統(tǒng)計圖可得,2015年出口額和進口額基本相等,而2016年到2019年出口額都大于進口額,則A正確;對B項,由統(tǒng)計圖可得,2015年出口額最少,則B正確;對C項,由統(tǒng)計圖可得,2019年進口增速都超過其余年份,則C正確;對D項,由統(tǒng)計圖可得,2015年到2016年出口增速是上升的,則D錯誤;故選:D【點睛】本題主要考查了根據(jù)條形統(tǒng)計圖和折線統(tǒng)計圖解決實際問題,屬于基礎(chǔ)題.8、C【解析】
取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點睛】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.9、D【解析】
對函數(shù)求導(dǎo),根據(jù)函數(shù)在時取得極值,得到,即可求出結(jié)果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.10、C【解析】
利用復(fù)數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎(chǔ)題.11、A【解析】
根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.12、B【解析】
設(shè)出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標系求出異面直線與所成角判斷④的正誤.【詳解】解:不妨設(shè)棱長為:2,對于①連結(jié),則,即與不垂直,又,①不正確;對于②,連結(jié),,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結(jié),易知,而在中,,,即,又,面,平面平面,③正確;以為坐標原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【點睛】本題考查命題的真假的判斷,棱錐的結(jié)構(gòu)特征,直線與平面垂直,直線與直線的位置關(guān)系的應(yīng)用,考查空間想象能力以及邏輯推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點睛】本題主要考查三角函數(shù)值的計算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應(yīng)用,難度不大.14、或【解析】試題分析:由,則可運用同角三角函數(shù)的平方關(guān)系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點:運用正弦定理解三角形.(注意多解的情況判斷)15、【解析】解答:由圓的方程可得圓心C的坐標為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點到原點距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點到直線的距離公式得:MN的最小值為:.16、1【解析】
當時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標為1,即當時,,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點從左到右依次為,,所以,故,所以函數(shù)的關(guān)系式為.當時,(1),即點的橫坐標為1,為二函數(shù)的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數(shù)關(guān)系式的恒等變換、正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運算能力及思維能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.18、(1)證明見解析(2)【解析】
(1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計算可得BF=DE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【詳解】(1)因為DE⊥平面ABCD,所以DEAD,因為AD=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四邊形BEDF,故DF//BE,因為BE平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如圖空間直角坐標系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,﹣3),,設(shè)平面CDF的法向量為,由,令x=3,得,易知平面ABF的一個法向量為,所以,故.【點睛】本題考查線面平行的判定以及利用建系方法解決面面角問題,屬基礎(chǔ)題.19、(1),;(2).【解析】
(1)根據(jù)面積公式和數(shù)量積性質(zhì)求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,余弦定理解三角形及三角形面積公式的應(yīng)用,屬于中檔題.20、(1);(2)【解析】
(1)由,可求出的值,進而可求得的解析式;(2)分別求得和的值域,再結(jié)合兩個函數(shù)的值域間的關(guān)系可求出的取值范圍.【詳解】(1)因為,所以,解得,故.(2)因為,所以,所以,則,圖象的對稱軸是.因為,所以,則,解得,故的取值范圍是.【點睛】本題考查了三角函數(shù)的恒等變換,考查了二次函數(shù)及三角函數(shù)值域的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《自然地理學(xué)Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年河北建筑安全員知識題庫及答案
- 2025云南省建筑安全員B證考試題庫
- 2025年云南建筑安全員《C證》考試題庫及答案
- 《急中毒總論》課件
- 《癌痛護理》課件
- 《返回總目錄》課件
- 【物理課件】電壓課件
- 上消化道出血病人的護理
- 課程《新編財務(wù)報表分析》課件(全)
- 2024年時政熱點知識競賽試卷及答案(共四套)
- 除顫儀使用護理查房
- 2024版《糖尿病健康宣教》課件
- 2024年T電梯修理考試題庫附答案
- 山東虛擬電廠商業(yè)模式介紹
- 2024年郵政系統(tǒng)招聘考試-郵政營業(yè)員考試近5年真題集錦(頻考類試題)帶答案
- 2023視頻監(jiān)控人臉識別系統(tǒng)技術(shù)規(guī)范
- 醫(yī)學(xué)教案SPZ-200型雙向道床配碴整形車操作保養(yǎng)維修手冊
- 2024年四川省宜賓市敘州區(qū)六年級數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析
- 獸醫(yī)學(xué)英語詞匯【參考】
- 10《吃飯有講究》(教學(xué)設(shè)計)-2024-2025學(xué)年道德與法治一年級上冊統(tǒng)編版
評論
0/150
提交評論