2023-2024學年福建省長樂高級中學高三第四次模擬考試數學試卷含解析_第1頁
2023-2024學年福建省長樂高級中學高三第四次模擬考試數學試卷含解析_第2頁
2023-2024學年福建省長樂高級中學高三第四次模擬考試數學試卷含解析_第3頁
2023-2024學年福建省長樂高級中學高三第四次模擬考試數學試卷含解析_第4頁
2023-2024學年福建省長樂高級中學高三第四次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省長樂高級中學高三第四次模擬考試數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.2.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學院、國防大學、國防科技大學聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生3.若數列滿足且,則使的的值為()A. B. C. D.4.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數為,則為()A. B. C. D.5.已知集合,集合,則等于()A. B.C. D.6.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數為()A.1 B.2 C.3 D.47.的展開式中,含項的系數為()A. B. C. D.8.某工廠利用隨機數表示對生產的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數表的第4行到第6行:若從表中第6行第6列開始向右讀取數據,則得到的第6個樣本編號是()A.324 B.522 C.535 D.5789.已知等差數列中,則()A.10 B.16 C.20 D.2410.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形11.已知函數的圖象如圖所示,則可以為()A. B. C. D.12.要得到函數的圖像,只需把函數的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位二、填空題:本題共4小題,每小題5分,共20分。13.設,則_____,(的值為______.14.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.15.下圖是一個算法流程圖,則輸出的S的值是______.16.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.18.(12分)在平面直角坐標系中,點,直線的參數方程為為參數),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.19.(12分)若不等式在時恒成立,則的取值范圍是__________.20.(12分)在直角坐標系中,直線的參數方程為(為參數,).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.21.(12分)某企業(yè)質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現對生產線上生產的零件進行成箱包裝出售,每箱個.企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用.現對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.22.(10分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數形結合的解題思想方法,考查思維能力與計算能力,屬于中檔題.2、C【解析】

根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.3、C【解析】因為,所以是等差數列,且公差,則,所以由題設可得,則,應選答案C.4、A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數學期望為.故選:A.【點睛】本題考查隨機變量數學期望的計算,考查計算能力,屬于基礎題.5、B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.6、B【解析】

設出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標系求出異面直線與所成角判斷④的正誤.【詳解】解:不妨設棱長為:2,對于①連結,則,即與不垂直,又,①不正確;對于②,連結,,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結,易知,而在中,,,即,又,面,平面平面,③正確;以為坐標原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【點睛】本題考查命題的真假的判斷,棱錐的結構特征,直線與平面垂直,直線與直線的位置關系的應用,考查空間想象能力以及邏輯推理能力.7、B【解析】

在二項展開式的通項公式中,令的冪指數等于,求出的值,即可求得含項的系數.【詳解】的展開式通項為,令,得,可得含項的系數為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.8、D【解析】

因為要對600個零件進行編號,所以編號必須是三位數,因此按要求從第6行第6列開始向右讀取數據,大于600的,重復出現的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數據,編號內的數據依次為:,因為535重復出現,所以符合要求的數據依次為,故第6個數據為578.選D.【點睛】本題考查了隨機數表表的應用,正確掌握隨機數表法的使用方法是解題的關鍵.9、C【解析】

根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的??碱}型.10、D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.11、A【解析】

根據圖象可知,函數為奇函數,以及函數在上單調遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進行奇偶性判斷,可知,為偶函數,不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數進行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進行單調性判斷,在上單調遞減,不符合題意,排除C.故選:A.【點睛】本題主要考查圖象的識別和函數性質的判斷,意在考查學生的直觀想象能力和邏輯推理能力,屬于容易題.12、A【解析】

運用輔助角公式將兩個函數公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點睛】本題考查了三角函數圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數和目標函數;二是在平移時,忘記乘了自變量前的系數.二、填空題:本題共4小題,每小題5分,共20分。13、7201【解析】

利用二項展開式的通式可求出;令中的,得兩個式子,代入可得結果.【詳解】利用二項式系數公式,,故,,故(=,故答案為:720;1.【點睛】本題考查二項展開式的通項公式的應用,考查賦值法,是基礎題.14、2【解析】

由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.15、【解析】

根據流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【點睛】本題考查算法流程圖,是基礎題.16、【解析】

根據題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據題意畫出幾何圖形,以為原點建立空間直角坐標系:設正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)平面平面,建立坐標系,根據法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.18、(1);(2).【解析】

(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθ=x,ρsinθ=y(tǒng),ρ2=x2+y2可得曲線C的直角坐標方程;(2)聯(lián)立直線l的參數方程與x2=4y由韋達定理以及參數的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標方程為:x2=4y.(2)聯(lián)立直線l的參數方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設A,B兩點對應的參數分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.19、【解析】

原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數,故.故.故答案為:.【點睛】本題考查含參數的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉化為不含參數的新函數的最值問題,本題屬于基礎題.20、(1),;(2)【解析】

(1)依題意可知,直線的極坐標方程為(),再對分三種情況考慮;(2)利用直線參數方程參數的幾何意義,求弦長即可得到答案.【詳解】(1)依題意可知,直線的極坐標方程為(),當時,聯(lián)立解得交點,當時,經檢驗滿足兩方程,(易漏解之處忽略的情況)當時,無交點;綜上,曲線與直線的點極坐標為,,(2)把直線的參數方程代入曲線,得,可知,,所以.【點睛】本題考查直線與曲線交點的極坐標、利用參數方程參數的幾何意義求弦長,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力.21、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】

(1)計算的頻率,并且與進行比較,判斷中位數落在的區(qū)間,然后根據頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數,寫出所有可能取值,并計算相對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論