結構化學分子對稱性省公開課金獎全國賽課一等獎微課獲獎課件_第1頁
結構化學分子對稱性省公開課金獎全國賽課一等獎微課獲獎課件_第2頁
結構化學分子對稱性省公開課金獎全國賽課一等獎微課獲獎課件_第3頁
結構化學分子對稱性省公開課金獎全國賽課一等獎微課獲獎課件_第4頁
結構化學分子對稱性省公開課金獎全國賽課一等獎微課獲獎課件_第5頁
已閱讀5頁,還剩61頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第四章分子對稱性第七章晶體結構對稱性1/672/673/67Symmetryisimportantinquantummechanicsfordeterminingmolecularstructureandforinterpretingspectroscopicinformation.Inadditionofbeingusedtosimplifycalculations,twopropertiesdirectlydependonsymmetry:opticalactivityanddipolemoments.Weconsiderequilibriumconfigurations,withtheatomsintheir

meanpositions.4/6755/67a)含有對稱中心b)沒有對稱中心6/677/67a)氨分子(NH3)三重軸b)水分子(H2O)二重軸8/679/67反應操作和鏡面10/6711/67σ垂直于主軸12/67σ經(jīng)過主軸13/67σ經(jīng)過主軸,平分兩副軸(C2軸)夾角14/67旋轉反應操作和映軸15/6716/67旋轉反演操作和反軸17/6718/67對稱元素組合-11、兩個旋轉軸組合交角為2pi/2n兩個C2軸,在其交點上必定出現(xiàn)一個垂直于這兩個C2軸Cn軸;而垂直于Cn軸經(jīng)過交點平面內(nèi)必有n個C2軸19/67對稱元素組合-22、兩個鏡面組合交角為2pi/2n兩個鏡面相交,則其交線必為n次軸Cn;Cn軸和經(jīng)過它鏡面組合,一定存在n個鏡面,相鄰鏡面夾角為2pi/2n20/67對稱元素組合-33、偶次旋轉軸和與它垂直鏡面組合一個偶次旋轉軸和與它垂直鏡面組合,必定在其交點上出現(xiàn)對稱中心---〉一個偶次旋轉軸和對稱中心組合,必有垂直于軸鏡面;,,,21/67群定義1、封閉性:2、主操作:3、逆操作:4、結合律:22/67群實例23/67群乘法表規(guī)則:先行后列,(列行)24/67分子點群分類Cn,Cnh,Cnv,Cni,Sn,Dn,Dnh,Dnd,

T,

Th,

Td,

O,

Oh,

I,

Ih25/6726PointgroupsPointgroupsareawayofclassifyingmoleculesintermsoftheirinternalsymmetry.Moleculescanhavemanysymmetryoperationsthatresultintoindistinguishableconfigurations.Differentcollectionsofsymmetryoperationsareorganizedintogroups.These11groupsweredevelopedbySchoenflies.C1: onlyidentity.Example:CHBrClFCs: onlyareflectionplane.Example:CH2BrClCi: onlyacenterofsymmetry.Example:staggered1,2-dibromo-1,2-dichloroethane.Cn: onlyaCncenterofsymmetry. ExampleofC2:hydrogenperoxide(notcoplanar)Cnv: onlyn-foldaxisandnvertical(ordihedral)mirrorplanes.

ExampleofC2v:water;ofC3v:ammoniaCnh: onlyn-foldaxis,ahorizontalmirrorplane,acenterofsymmetryoran improperaxis.

ExampleofC2h:transdichloroethylene;ofC3h:B(OH)3.26/6727Dn: OnlyaCnandC2perpendiculartoit(propeller):Dnd: ACn,twoperpendicularC2andadihedralmirrorplanecolinear withtheprincipalaxis.D2dAllene:H2C=C=CH2.Dnh: ACn,andahorizontalmirrorplaneperpendiculartoCn.D6hbenzeneSn: ASnaxis.S41,3,5,7-tetramethylcyclooctatetraeneSpecial: Linearmolecules:C

v:

ifthereisnoaxisperpendiculartotheprincipalaxisD

h: ifthereisanaxisperpendiculartotheprincipalaxisTetrahedralmolecules:Td(acubeisTh)Octahedralmolecules:OhIcosahedronanddodecahedronmolecules:IhAsphere,likeanatom,isKh27/6728Decisiontree:28/67分子偶極矩和極化率偶極矩:dipole,μ=qr(庫侖米Cm)μ=4.8×10-18cmesu=4.8DDebye1D=3.336×10-30Cm只有屬于Cn和Cnv

這兩類點分子才可能含有永久偶極矩誘導偶極矩:在電場E中分子發(fā)生誘導極化而產(chǎn)生μ誘=αE,α分子極化率矢量標量29/67分子偶極矩和極化率μ誘=αE+βEE+γEEE+,α分子極化率,β分子第一超極化率,

γ分子第二超極化率

30/67分子手性和旋光性若分子含有反軸對稱性,一定沒有旋光性若分子沒有反軸對稱性,可能含有旋光性31/6732/67entrycatalystsolventhyield[%][b]ee[%][c]1HBC-1CH2Cl22474502HBC-2CH2Cl22489-703HBC-3CH2Cl22489724HBC-4CH2Cl22460625HBC-5CH2Cl22492826HBC-6CH2Cl22498807[d]HBC-6CH2Cl24085868[d]HBC-6CHCl31694869[d]HBC-6Et2O120838010[d]HBC-6CH3CN30838011[d]HBC-6CH3OH72946412[e]HBC-6CHCl36d929233/67Mod1(R1=R2=Me)34/67Symmetryoperationsobeythelawsofgrouptheory.Asymmetryoperationcanberepresentedbyamatrixoperatingonabasesetdescribingthemolecule.Differentbasissetscanbechosen,theyareconnectedbysimilaritytransformations.S-1AS

diagonalblockmatrixFordifferentbasissetsthematricesdescribingthesymmetryoperationslookdifferent.However,theircharacter(trace)isthesame!群表示35/67Matrixrepresentationsofsymmetryoperationscanoftenbereducedintoblockmatrices.Similaritytransformationsmayhelptoreducerepresentationsfurther.Thegoalistofindtheirreduciblerepresentation,theonlyrepresentationthatcannotbereducedfurther.Thesame”type”ofoperations(rotations,reflectionsetc)belongtothesameclass.FormallyRandR’belongtothesameclassifthereisasymmetryoperationSsuchthatR’=S-1RS.Symmetryoperationsofthesameclasswillalwayshavethesamecharacter.群表示36/67C’C’’CBlockMatricesA’A’’=AB’B’’=BC’C’’=CBlockmatricesaregood37/67BlockMatricesIfamatrixrepresentingasymmetryoperationistransformedintoblockdiagonalformtheneachlittleblockisalsoarepresentationoftheoperationsincetheyobeythesamemultiplicationlaws.Whenamatrixcannotbereducedfurtherwehavereachedtheirreduciblerepresentation.Thenumberofreduciblerepresentationsofsymmetryoperationsisinfinitebutthereisasmallfinitenumberofirreduciblerepresentations.Thenumberofirreduciblerepresentationsisalwaysequaltothenumberofclassesofthesymmetrypointgroup.38/67GroupTheoryIIAsstatedbeforeallrepresentationsofacertainsymmetryoperationhavethesamecharacterandwewillworkwiththemratherthanthematricesthemselves.Thecharactersofdifferentirreduciblerepresentationsofpointgroupsarefoundincharactertables.Charactertablescaneasilybefoundintextbooks.Reducingbigmatricestoblockdiagonalformisalwayspossiblebutnoteasy.Fortunatelywedonothavetodothisourselves.39/67CharacterTablesTheC3vcharactertableIrreduciblerepresentationsSymmetryoperationsTheorderhis6Thereare3classes40/67CharacterTablesOperationsbelongingtothesameclasswillhavethesamecharactersowecanwrite:Irreduciblerepresentations(symmetryspecies)Classes41/67TheGreatOrthogonalityTheorem”Consideragroupoforderh,andletD(l)(R)betherepresentativeoftheoperationRinadl-dimensionalirreduciblerepresentationofsymmetryspeciesG(l)ofthegroup.Then

”Readmoreaboutitinsection4.6.3.42/67Here’sasmallerone,wherec(l)(R)isthecharacteroftheoperation(R).Orevenmoresimpleifthenumberofsymmetryoperationsinaclasscisg(c).Thensincealloperationsbelongingtothesameclasshavethesamecharacter.TheLittleOrthogonalityTheorem

43/67

characterTablesThereisanumberofusefulpropertiesofcharactertables:ThesumofthesquaresofthedimensionalityofalltheirreduciblerepresentationsisequaltotheorderofthegroupThesumofthesquaresoftheabsolutevaluesofcharactersofanyirreduciblerepresentationisequaltotheorderofthegroup.Thesumoftheproductsofthecorrespondingcharactersofanytwodifferentirreduciblerepresentationsofthesamegroupiszero.Thecharactersofallmatricesbelongingtotheoperationsinthesameclassareidenticalinagivenirreduciblerepresentation.Thenumberofirreduciblerepresentationsinagroupisequaltothenumberofclassesofthatgroup.44/67IrreduciblerepresentationsEachirreduciblerepresentationofagrouphasalabelcalledasymmetryspecies,generallynotedG.WhenthetypeofirreduciblerepresentationisdetermineditisassignedaMullikensymbol:One-dimensionalirreduciblerepresentationsarecalledAorB.Two-dimensionalirreduciblerepresentationsarecalledE.Three-dimensionalirreduciblerepresentationsarecalledT(F).Thebasisforanirreduciblerepresentationissaidtospantheirreduciblerepresentation.Don’tmistaketheoperationEfortheMullikensymbolE!45/67IrreduciblerepresentationsThedifferencebetweenAandBisthatthecharacterforarotationCnisalways1forAand-1forB.Thesubscripts1,2,3etc.arearbitrarylabels.Subscriptsgandustandsforgeradeandungerade,meaningsymmetricorantisymmetricwithrespecttoinversion.Superscripts’and’’denotessymmetryorantisymmetrywithrespecttoreflectionthroughahorizontalmirrorplane.46/67characterTablesExample:ThecompleteC4vcharactertableThesearebasisfunctionsfortheirreduciblerepresentations.Theyhavethesamesymmetrypropertiesastheatomicorbitalswiththesamenames.47/67characterTablesExample:ThecompleteC4vcharactertableA1transformslikez.Edoesnothing,C4rotates90oaboutthez-axis,C2rotates180oaboutthez-axis,svreflectsinverticalplaneandsdinadiagonalplane.48/67characterTablesA2transformslikearotationaroundz.E+RzC4+RzC2+Rzsv-Rzsd-Rz49/67ReducibletoIrreduciblerepresentationGivenageneralsetofbasisfunctionsdescribingamolecule,howdowefindthesymmetryspeciesoftheirreduciblerepresentationstheyspan?50/67ReducibletoIrreduciblerepresentationIfwehaveaninterestingmoleculethereisoftenanaturalchoiceofbasis.Itcouldbecartesiancoordinatesorsomethingmoreclever.Fromthebasiswecanconstructthematrixrepresentationsofthesymmetryoperationsofthepointgroupofthemoleculeandcalculatethecharactersoftherepresentations.51/67ReducibletoIrreduciblerepresentationHowdowefindtheirreduciblerepresentation?Let’suseanoldexamplefromtwoweeksago:123NC3vinthebasis(Sn,S1,S2,S3)Tofindthecharactersofthesymmetryoperationswelookathowmanybasiselements”fallontothemselves”(ortheirnegativeself)afterthesymmetryoperation.E:c=4C3:c=1sv:c=252/67ReducibletoIrreduciblerepresentation123NSoC3vinthebasis(Sn,S1,S2,S3)willhavethefollowingcharactersforthedifferentsymmetryoperations.53/67ReducibletoIrreduciblerepresentation123NSoC3v

inthebasis(Sn,S1,S2,S3)willhavethefollowingcharactersforthedifferentsymmetryoperations.Let’saddthecharactertableoftheirreduciblerepresentationByinspectionwefindGred=2A1+E54/67ReducibletoIrreduciblerepresentationThedecompositionofanyreduciblerepresentationintoirreducibleonesisuniqe,soifyoufindcombinationthatworksitisright.Ifdecompositionbyinspectiondoesnotworkwehavetouseresultsfromthegreatandlittleorthogonalitytheorems

(unlesswehaveaninfinitegroup).55/67ReducibletoIrreduciblerepresentationFromLOTwecanderivetheexpression(seeEq

4.6.2)whereaiisthenumberoftimestheirreduciblerepresentationGiappearsinGred,htheorderofthegroup,lanoperationofthegroup,g(c)thenumberofsymmetryoperationsintheclassofl,credthecharacteroftheoperationlinthereduciblerepresentationandcithecharacteroflintheirreduciblerepresentation.56/67ReducibletoIrreduciblerepresentationLet’sgobacktoourexampleagain.SoonceagainwefindGred=2A1+E

57/67ProjectionOperatorSymmetry-adaptedbasesTheprojectionoperatortakesnon-symmetry-adaptedbasisofarepresentationandandprojectsitalongnewdirectionssothatitbelongstoaspecificirreduciblerepresentationofthegroup.wherePlistheprojectionoperatoroftheirreduciblerepresentationl,c(l)isthecharacteroftheoperationRfortherepresentationlandRmeansapplicationofRtoouroriginalbasiscomponent.^^58/67Applications?Canallofthisactuallybeuseful?Yes,inmanyareasforexamplewhenstudyingelectronicstructureofatomsandmolecules,chemicalreactions,crystallography,stringtheory(Lie-algebra)etc…Let’slookatonesimpleexampleconceringmolecularvibrations.MartinJ?nssonwilltellyoualotmoreinacoupleofweeks.59/67MolecularVibrationsWaterMolecularvibrationscanalwaysbedecomposedintoquitesimplecomponentscallednormalmodes.Waterhas9normalmodesofwhich3aretranslational,3arerotationaland3aretheactualvibrations.Eachnormalmodeformsabasisforanirreduciblerepresentationofthemolecule.60/67MolecularVibrationsFirstfindabasisforthemolecule.Let’stakethecartesiancoordinatesforeachatom.x1x3x2y1y2y3z1z2z3WaterbelongstotheC2vgroupwhichcontainstheoperationsE,C2,sv(xz)andsv’(yz).Therepresentationbecomes

E C2

sv(xz) sv’(yz)Gred

9-11361/67MolecularVibrationsCharactertableforC2v.NowreduceGredtoasumofirreduciblerepresentations.Useinspectionortheformula.62/67MolecularVibrationsTherep

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論