山西省晉南地區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
山西省晉南地區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
山西省晉南地區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
山西省晉南地區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
山西省晉南地區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山西省晉南地區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半徑為3,那么下列說法正確的是()A.點B、點C都在⊙A內(nèi) B.點C在⊙A內(nèi),點B在⊙A外C.點B在⊙A內(nèi),點C在⊙A外 D.點B、點C都在⊙A外2.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學(xué)生的心理健康情況,應(yīng)該采用普查的方式C.一組數(shù)據(jù)8,8,7,10,6,8,9的眾數(shù)和中位數(shù)都是8D.若甲組數(shù)據(jù)的方差S="0.01",乙組數(shù)據(jù)的方差s=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定3.小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá).若設(shè)走路線一時的平均速度為x千米/小時,根據(jù)題意,得A.25x-C.30(1+80%)x-4.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.65.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=16.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.7.有三張正面分別標(biāo)有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.8.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.9.若一個正多邊形的每個內(nèi)角為150°,則這個正多邊形的邊數(shù)是()A.12 B.11 C.10 D.910.如圖是一個正方體的表面展開圖,如果對面上所標(biāo)的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.11.一、單選題點P(2,﹣1)關(guān)于原點對稱的點P′的坐標(biāo)是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)12.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達(dá)式為()A.y= B.y= C.y= D.y=﹣二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知在平行四邊形ABCD中,E是邊AB的中點,F(xiàn)在邊AD上,且AF:FD=2:1,如果=,=,那么=_____.14.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.15.如圖,在平面直角坐標(biāo)系中,以點O為圓心,適當(dāng)長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內(nèi)交于點p(a,b),則a與b的數(shù)量關(guān)系是________.16.將半徑為5,圓心角為144°的扇形圍成一個圈錐的側(cè)面,則這個圓錐的底面半徑為.17.某種商品每件進(jìn)價為20元,調(diào)查表明:在某段時間內(nèi)若以每件x元(20≤x≤30,且x為整數(shù))出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應(yīng)為______元.18.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結(jié)論的是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖是根據(jù)對某區(qū)初中三個年級學(xué)生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進(jìn)行隨機(jī)抽樣調(diào)查,并繪制了下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:(1)求該區(qū)抽樣調(diào)查人數(shù);(2)補(bǔ)全條形統(tǒng)計圖,并求出最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角度數(shù);(3)若該區(qū)有初中生14400人,估計該區(qū)有初中生最喜歡讀“名人傳記”的學(xué)生是多少人?20.(6分)如圖,在矩形ABCD中,E是BC邊上的點,,垂足為F.(1)求證:;(2)如果,求的余切值.21.(6分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設(shè)計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)22.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.23.(8分)用你發(fā)現(xiàn)的規(guī)律解答下列問題.┅┅計算.探究.(用含有的式子表示)若的值為,求的值.24.(10分)如圖,大樓AB的高為16m,遠(yuǎn)處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)25.(10分)學(xué)校決定從甲、乙兩名同學(xué)中選拔一人參加“誦讀經(jīng)典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.請回答下列問題:甲成績的中位數(shù)是______,乙成績的眾數(shù)是______;經(jīng)計算知,.請你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.26.(12分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點M為BF的中點,當(dāng)點P在BD邊上運動時,則PF+PM的最小值為,并在圖上標(biāo)出此時點P的位置.27.(12分)如圖,已知拋物線經(jīng)過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉(zhuǎn)后,點落在點的位置,將拋物線沿軸平移后經(jīng)過點,求平移后所得圖象的函數(shù)關(guān)系式;(3)設(shè)(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標(biāo).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

先求出AB的長,再求出AC的長,由B、C到A的距離及圓半徑的長的關(guān)系判斷B、C與圓的關(guān)系.【詳解】由題意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,點B、點C都在⊙A外.故答案選D.【點睛】本題考查的知識點是點與圓的位置關(guān)系,解題的關(guān)鍵是熟練的掌握點與圓的位置關(guān)系.2、C【解析】

眾數(shù),中位數(shù),方差等概念分析即可.【詳解】A、中獎是偶然現(xiàn)象,買再多也不一定中獎,故是錯誤的;B、全國中學(xué)生人口多,只需抽樣調(diào)查就行了,故是錯誤的;C、這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數(shù)據(jù)更穩(wěn)定,故是錯誤.故選C.【點睛】考核知識點:眾數(shù),中位數(shù),方差.3、A【解析】若設(shè)走路線一時的平均速度為x千米/小時,根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá)可列出方程.解:設(shè)走路線一時的平均速度為x千米/小時,25故選A.4、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).5、D【解析】試題分析:x4x4=x8(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術(shù)平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術(shù)平方根.6、D【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據(jù)等邊對等角的性質(zhì)可得∠A=∠ACD,然后根據(jù)正切函數(shù)的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點睛】本題考查了銳角三角函數(shù)的定義,直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊對等角的性質(zhì),求出∠A=∠ACD是解本題的關(guān)鍵.7、C【解析】畫樹狀圖得:

∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點睛】運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.8、A【解析】作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補(bǔ)角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質(zhì).9、A【解析】

根據(jù)正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ),得到這個正多邊形的每個外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個正多邊形的每個內(nèi)角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數(shù)==1.故選:A.【點睛】本題考查了正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).10、D【解析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關(guān)鍵是要熟練掌握正方體展開圖的特征.11、A【解析】

根據(jù)“關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”解答.【詳解】解:點P(2,-1)關(guān)于原點對稱的點的坐標(biāo)是(-2,1).故選A.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).12、C【解析】

由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負(fù),至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關(guān)于反比例函數(shù)的題目,需結(jié)合反比例函數(shù)中系數(shù)k的幾何意義解答;二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù),只要求出、即可解決問題;【詳解】∵四邊形是平行四邊形,,,,,,,,.故答案為.【點睛】本題考查的知識點是平面向量,平行四邊形的性質(zhì),解題關(guān)鍵是表達(dá)出、.14、或.【解析】

聯(lián)立方程可得,設(shè),從而得出的圖象在上與x軸只有一個交點,當(dāng)△時,求出此時m的值;當(dāng)△時,要使在之間有且只有一個公共點,則當(dāng)x=-2時和x=2時y的值異號,從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當(dāng)△時,即△解得:,當(dāng)時,當(dāng)時,,滿足題意,當(dāng)△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉(zhuǎn)化為一元二次方程解的問題是解決此題的關(guān)鍵.15、a+b=1.【解析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標(biāo)互為相反數(shù),故a+b=1.考點:1角平分線;2平面直角坐標(biāo)系.16、1【解析】考點:圓錐的計算.分析:求得扇形的弧長,除以1π即為圓錐的底面半徑.解:扇形的弧長為:=4π;這個圓錐的底面半徑為:4π÷1π=1.點評:考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.17、3【解析】試題分析:設(shè)最大利潤為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當(dāng)x=3時,二次函數(shù)有最大值3,故答案為3.考點:3.二次函數(shù)的應(yīng)用;3.銷售問題.18、①②③【解析】

根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設(shè)BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數(shù)有1個:①②③.故答案為①②③【點睛】本題綜合性較強(qiáng),考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計算,有一定的難度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)該區(qū)抽樣調(diào)查的人數(shù)是2400人;(2)見解析,最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)估計最喜歡讀“名人傳記”的學(xué)生是4896人【解析】

(1)由“科普知識”人數(shù)及其百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以“漫畫叢書”的人數(shù)求得其人數(shù)即可補(bǔ)全圖形,用360°乘以“其他”人數(shù)所占比例可得;(3)總?cè)藬?shù)乘以“名人傳記”的百分比可得.【詳解】(1)840÷35%=2400(人),∴該區(qū)抽樣調(diào)查的人數(shù)是2400人;(2)2400×25%=600(人),∴該區(qū)抽樣調(diào)查最喜歡“漫畫叢書”的人數(shù)是600人,補(bǔ)全圖形如下:×360°=21.6°,∴最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)從樣本估計總體:14400×34%=4896(人),答:估計最喜歡讀“名人傳記”的學(xué)生是4896人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖能夠清楚地表示各部分所占的百分比.20、(1)見解析;(2).【解析】

(1)矩形的性質(zhì)得到,得到,根據(jù)定理證明;(2)根據(jù)全等三角形的性質(zhì)、勾股定理、余切的定義計算即可.【詳解】解:(1)證明:四邊形是矩形,,,在和中,,,;(2),,設(shè),,,,,,,,.【點睛】本題考查的是矩形的性質(zhì)、勾股定理的運用、全等三角形的判定和性質(zhì)以及余切的定義,掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.21、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設(shè)計方案不滿足安全要求”.【詳解】解:施工方提供的設(shè)計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設(shè)計方案不滿足安全要求.22、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.23、解:(1);(2);(3)n=17.【解析】

(1)、根據(jù)給出的式子將各式進(jìn)行拆開,然后得出答案;(2)、根據(jù)給出的式子得出規(guī)律,然后根據(jù)規(guī)律進(jìn)行計算;(3)、根據(jù)題意將式子進(jìn)行展開,然后列出關(guān)于n的一元一次方程,從而得出n的值.【詳解】(1)原式=1?+?+?+?+?=1?=.故答案為;(2)原式=1?+?+?+…+?=1?=故答案為;(3)+++…+=(1?+?+?+…+?)=(1?)==解得:n=17.考點:規(guī)律題.24、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關(guān)于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.25、(1)83,81;(2),推薦甲去參加比賽.【解析】

(1)根據(jù)中位數(shù)和眾數(shù)分別求解可得;(2)先計算出甲的平均數(shù)和方差,再根據(jù)方差的意義判別即可得.【詳解】(1)甲成績的中位數(shù)是83分,乙成績的眾數(shù)是81分,故答案為:83分、81分;(2),∴.∵,,∴推薦甲去參加比賽.【點睛】此題主要考查了方差、平均數(shù)、眾數(shù)、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論