廣東省珠海市香洲區(qū)5月份2023-2024學年中考猜題數(shù)學試卷含解析_第1頁
廣東省珠海市香洲區(qū)5月份2023-2024學年中考猜題數(shù)學試卷含解析_第2頁
廣東省珠海市香洲區(qū)5月份2023-2024學年中考猜題數(shù)學試卷含解析_第3頁
廣東省珠海市香洲區(qū)5月份2023-2024學年中考猜題數(shù)學試卷含解析_第4頁
廣東省珠海市香洲區(qū)5月份2023-2024學年中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣東省珠海市香洲區(qū)5月份2023-2024學年中考猜題數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,152.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.83.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.34.一元二次方程的根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷5.小明要去超市買甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價為a元/千克,乙種糖果的單價為b元/千克,且a>b.根據(jù)需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢的方案為()A.方案1 B.方案2C.方案3 D.三個方案費用相同6.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°7.如圖,這是一個幾何體的三視圖,根據(jù)圖中所示數(shù)據(jù)計算這個幾何體的側(cè)面積為()A.9π B.10π C.11π D.12π8.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°9.已知,下列說法中,不正確的是()A. B.與方向相同C. D.10.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分二、填空題(本大題共6個小題,每小題3分,共18分)11.今年,某縣境內(nèi)跨湖高速進入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側(cè)面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.12.在平面直角坐標系中,點A的坐標是(-1,2).作點A關(guān)于x軸的對稱點,得到點A1,再將點A1向下平移4個單位,得到點A2,則點A2的坐標是_________.13.如圖,在平面直角坐標系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.14.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點C旋轉(zhuǎn),使得點A落在點A′,點B落在點B′.若點A′在邊AB上,則點B、B′的距離為_____.15.計算(2a)3的結(jié)果等于__.16.對于任意不相等的兩個實數(shù),定義運算※如下:※=,如3※2==.那么8※4=.三、解答題(共8題,共72分)17.(8分)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學生人數(shù)是多少人;(2)補全條形統(tǒng)計圖;(3)若該校共有2000名學生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.18.(8分)某區(qū)教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績?yōu)闃颖荆碅、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數(shù)占全班學生人數(shù)的百分比是;(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是;(3)請把條形統(tǒng)計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)之和.19.(8分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.20.(8分)如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經(jīng)過點B、C,與x軸的另一個交點為點A(點A在點B的左側(cè)),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結(jié)合函數(shù)的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.21.(8分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.22.(10分)程大位是珠算發(fā)明家,他的名著《直指算法統(tǒng)宗》詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾?。馑际牵河?00個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人?23.(12分)如圖,△ABC中,點D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的長.24.剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.2、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質(zhì)、三角形的中位線定理等知識,解題的關(guān)鍵是熟練掌握三角形的中位線定理,屬于中考??碱}型.3、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關(guān)鍵是通過設點B的坐標,表示出點A′的坐標.4、A【解析】

把a=1,b=-1,c=-1,代入,然后計算,最后根據(jù)計算結(jié)果判斷方程根的情況.【詳解】方程有兩個不相等的實數(shù)根.故選A.【點睛】本題考查根的判別式,把a=1,b=-1,c=-1,代入計算是解題的突破口.5、A【解析】

求出三種方案混合糖果的單價,比較后即可得出結(jié)論.【詳解】方案1混合糖果的單價為,方案2混合糖果的單價為,方案3混合糖果的單價為.∵a>b,∴,∴方案1最省錢.故選:A.【點睛】本題考查了加權(quán)平均數(shù),求出各方案混合糖果的單價是解題的關(guān)鍵.6、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.7、B【解析】【分析】由三視圖可判斷出幾何體的形狀,進而利用圓錐的側(cè)面積公式求出答案.【詳解】由題意可得此幾何體是圓錐,底面圓的半徑為:2,母線長為:5,故這個幾何體的側(cè)面積為:π×2×5=10π,故選B.【點睛】本題考查了由三視圖判斷幾何體的形狀以及圓錐側(cè)面積求法,正確得出幾何體的形狀是解題關(guān)鍵.8、C【解析】

如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準確識圖是解題的關(guān)鍵.9、A【解析】

根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.10、D【解析】

解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術(shù)平均數(shù),掌握概念正確計算是關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、m【解析】

由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關(guān)系即可得出結(jié)論.【詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【點睛】解直角三角形的應用-仰角俯角問題.12、(-1,-6)【解析】

直接利用關(guān)于x軸對稱點的性質(zhì)得出點A1坐標,再利用平移的性質(zhì)得出答案.【詳解】∵點A的坐標是(-1,2),作點A關(guān)于x軸的對稱點,得到點A1,

∴A1(-1,-2),

∵將點A1向下平移4個單位,得到點A2,

∴點A2的坐標是:(-1,-6).

故答案為:(-1,-6).【點睛】解決本題的關(guān)鍵是掌握好對稱點的坐標規(guī)律:(1)關(guān)于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關(guān)于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).13、1【解析】

連接OB,由矩形的性質(zhì)和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數(shù)y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|,且保持不變.14、4【解析】

過點C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進而利用三線合一的性質(zhì)得出AA'的值,然后利用旋轉(zhuǎn)的性質(zhì)可判定△ACA'∽△BCB',繼而利用相似三角形的對應邊成比例的性質(zhì)可得出BB'的值.【詳解】解:過點C作CH⊥AB于H,

∵在Rt△ABC中,∠C=90,cosA=,

∴AC=AB?cosA=6,BC=3,

在Rt△ACH中,AC=6,cosA=,

∴AH=AC?cosA=4,

由旋轉(zhuǎn)的性質(zhì)得,AC=A'C,BC=B'C,

∴△ACA'是等腰三角形,因此H也是AA'中點,

∴AA'=2AH=8,

又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉(zhuǎn)角,

∴∠ACA'=∠BCB',

∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點睛】此題考查了解直角三角形、旋轉(zhuǎn)的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出△ACA'∽△BCB'.15、8【解析】試題分析:根據(jù)冪的乘方與積的乘方運算法則進行計算即可考點:(1)、冪的乘方;(2)、積的乘方16、【解析】

根據(jù)新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.三、解答題(共8題,共72分)17、(1)本次抽樣調(diào)查中的學生人數(shù)為100人;(2)補全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4).【解析】

(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);(2)先計算出選“舞蹈”的人數(shù),再計算出選“打球”的人數(shù),然后補全條形統(tǒng)計圖;(3)用2000乘以樣本中選“打球”的人數(shù)所占的百分比可估計該校課余興趣愛好為“打球”的學生人數(shù);(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選到一男一女的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調(diào)查中的學生人數(shù)為100人;(2)選”舞蹈”的人數(shù)為100×10%=10(人),選“打球”的人數(shù)為100﹣30﹣10﹣20=40(人),補全條形統(tǒng)計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中選到一男一女的結(jié)果數(shù)為8,所以選到一男一女的概率=.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,列表法與樹狀圖法求概率,讀懂統(tǒng)計圖,從中找到有用的信息是解題的關(guān)鍵.本題中還用到了知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】

解:(1)根據(jù)題意得:

D級的學生人數(shù)占全班人數(shù)的百分比是:

1-20%-46%-24%=10%;

(2)A級所在的扇形的圓心角度數(shù)是:20%×360°=72°;

(3)∵A等人數(shù)為10人,所占比例為20%,

∴抽查的學生數(shù)=10÷20%=50(人),

∴D級的學生人數(shù)是50×10%=5(人),

補圖如下:

(4)根據(jù)題意得:

體育測試中A級和B級的學生人數(shù)之和是:500×(20%+46%)=330(名),

答:體育測試中A級和B級的學生人數(shù)之和是330名.【點睛】本題考查統(tǒng)計的知識,要求考生會識別條形統(tǒng)計圖和扇形統(tǒng)計圖.19、(1)證明見解析;(2).【解析】

(1)由切線的性質(zhì)可知∠DAB=90°,由直角所對的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質(zhì)可知∠B=∠OCB,由對頂角的性質(zhì)可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE?AD,故此可求得DE=,于是可求得AE=.【詳解】解:(1)∵AD是圓O的切線,∴∠DAB=90°.∵AB是圓O的直徑,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.20、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】

(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2),當直線l2經(jīng)過點D時求得m=﹣2;當直線l2經(jīng)過點C時求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當直線l2在x軸的下方時,點Q在點P、N之間和當直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點為D(2,﹣2),當直線l2經(jīng)過點D時,m=﹣2;當直線l2經(jīng)過點C時,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當直線l2在x軸的下方時,點Q在點P、N之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點P、Q關(guān)于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點Q(x2,y2)的坐標代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負值已舍去),∴m=()2﹣4×+3=如圖②,當直線l2在x軸的上方時,點N在點P、Q之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PN=NQ.由上可得點P、Q關(guān)于直線l2對稱,∴點N在拋物線的對稱軸l2:x=2,又點N在直線y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、函數(shù)圖象的交點、線段的中點及分類討論思想等知識.在(2)中注意待定系數(shù)法的應用;在(2)①注意利用數(shù)形結(jié)合思想;在(2)②注意分情況討論.本題考查知識點較多,綜合性較強,難度較大.21、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論