智能控制試卷及答案4套_第1頁(yè)
智能控制試卷及答案4套_第2頁(yè)
智能控制試卷及答案4套_第3頁(yè)
智能控制試卷及答案4套_第4頁(yè)
智能控制試卷及答案4套_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

附件1智能控制課程試題A附件1題號(hào)一二三四五六七總分分?jǐn)?shù)合分人:復(fù)查人:一、填空題〔每空1分,共20分〕分?jǐn)?shù)評(píng)卷人1.智能控制系統(tǒng)的根本類型有、、、、和。2.智能控制具有2個(gè)不同于常規(guī)控制的本質(zhì)特點(diǎn):和。3.一個(gè)理想的智能控制系統(tǒng)應(yīng)具備的性能是、、、、等。4.人工神經(jīng)網(wǎng)絡(luò)常見的輸出變換函數(shù)有:和。5.人工神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)規(guī)那么有:、和。6.在人工智能領(lǐng)域里知識(shí)表示可以分為和兩類。二、簡(jiǎn)答題:〔每題5分,共30分〕分?jǐn)?shù)評(píng)卷人1.智能控制系統(tǒng)應(yīng)具有的特點(diǎn)是什么?2.智能控制系統(tǒng)的結(jié)構(gòu)一般有哪幾局部組成,它們之間存在什么關(guān)系?3.比擬智能控制與傳統(tǒng)控制的特點(diǎn)。4.神經(jīng)元計(jì)算與人工智能傳統(tǒng)計(jì)算有什么不同?5.人工神經(jīng)元網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)主要有哪幾種?6.簡(jiǎn)述專家系統(tǒng)與傳統(tǒng)程序的區(qū)別。三、作圖題:〔每圖4分,共20分〕分?jǐn)?shù)評(píng)卷人1.畫出以下應(yīng)用場(chǎng)合下適當(dāng)?shù)碾`屬函數(shù):〔a〕我們絕對(duì)相信附近的e(t)是“正小”,只有當(dāng)e(t)足夠遠(yuǎn)離時(shí),我們才失去e(t)是“正小”的信心;〔b〕我們相信附近的e(t)是“正大”,而對(duì)于遠(yuǎn)離的e(t)我們很快失去信心;〔c〕隨著e(t)從向左移動(dòng),我們很快失去信心,而隨著e(t)從向右移動(dòng),我們較慢失去信心。2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學(xué)表達(dá)形式,并畫出隸屬函數(shù)圖。四、計(jì)算題:〔每題10分,共20分〕分?jǐn)?shù)評(píng)卷人1.一個(gè)模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計(jì)算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-erroriszeroThenforceiszero。均使用最小化操作表示蘊(yùn)含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊(yùn)含(usingproductopertor);2.設(shè)論域,且試求〔補(bǔ)集〕,〔補(bǔ)集〕五、試論述對(duì)BP網(wǎng)絡(luò)算法的改良?!补?0分〕分?jǐn)?shù)評(píng)卷人附件1智能控制課程試題B附件1題號(hào)一二三四五六七總分分?jǐn)?shù)合分人:復(fù)查人:一、填空題〔每空1分,共20分〕分?jǐn)?shù)評(píng)卷人1.智能控制的研究對(duì)象具備的特點(diǎn)有:、和。2.智能控制系統(tǒng)的主要類型有:、、、、和。3.確定隸屬函數(shù)的方法大致有、和。4.國(guó)內(nèi)外學(xué)者提出了許多面向?qū)ο蟮纳窠?jīng)網(wǎng)絡(luò)控制結(jié)構(gòu)和方法,從大類上看,較具代表性的有以下幾種:、和。5.在一個(gè)神經(jīng)網(wǎng)絡(luò)中,常常根據(jù)處理單元的不同處理功能,將處理單元分成有以下三種:、和。6.專家系統(tǒng)具有三個(gè)重要的特征是:、和。二、簡(jiǎn)答題:〔每題5分,共30分〕分?jǐn)?shù)評(píng)卷人智能控制有哪些應(yīng)用領(lǐng)域?試舉例說(shuō)明其工作原理。試說(shuō)明智能控制的三元結(jié)構(gòu),并畫出展示它們之間關(guān)系的示意圖。模糊邏輯與隨機(jī)事件的聯(lián)系與區(qū)別。給出典型的神經(jīng)元模型。BP根本算法的優(yōu)缺點(diǎn)。專家系統(tǒng)的根本組成。三、作圖題:〔每圖4分,共20分〕分?jǐn)?shù)評(píng)卷人1.畫出以下應(yīng)用場(chǎng)合下適當(dāng)?shù)碾`屬函數(shù):〔a〕隨著e(t)從向左移動(dòng),我們很快失去信心,而隨著e(t)從向右移動(dòng),我們較慢失去信心?!瞓〕我們相信附近的e(t)是“正大”,而對(duì)于遠(yuǎn)離的e(t)我們很快失去信心;〔c〕我們絕對(duì)相信附近的e(t)是“正小”,只有當(dāng)e(t)足夠遠(yuǎn)離時(shí),我們才失去e(t)是“正小”的信心;2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學(xué)表達(dá)形式,并畫出隸屬函數(shù)圖。四、計(jì)算題:〔每題10分,共20分〕分?jǐn)?shù)評(píng)卷人1.一個(gè)模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計(jì)算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-errorisnegsmallThenforceispossmall。均使用最小化操作表示蘊(yùn)含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊(yùn)含(usingproductopertor);2.設(shè)論域,且試求〔補(bǔ)集〕,〔補(bǔ)集〕五、試論述建立專家系統(tǒng)的步驟。〔共10分〕分?jǐn)?shù)評(píng)卷人附件1智能控制課程試題C附件1題號(hào)一二三四五六七總分分?jǐn)?shù)合分人:復(fù)查人:一、填空題〔每空1分,共20分〕分?jǐn)?shù)評(píng)卷人1.智能控制是一門新興的學(xué)科,它具有非常廣泛的應(yīng)用領(lǐng)域,例如、、、和。2.傳統(tǒng)控制包括和。3.一個(gè)理想的智能控制系統(tǒng)應(yīng)具備的性能是、、、、等。4.學(xué)習(xí)系統(tǒng)的四個(gè)根本組成局部是、、、。5.專家系統(tǒng)的根本組成局部是、、。二、簡(jiǎn)答題:〔每題5分,共30分〕分?jǐn)?shù)評(píng)卷人智能控制系統(tǒng)的結(jié)構(gòu)一般有哪幾局部組成,它們之間存在什么關(guān)系?智能控制系統(tǒng)有哪些類型,各自的特點(diǎn)是什么?比擬智能控制與傳統(tǒng)控制的特點(diǎn)。4.根據(jù)外部環(huán)境所提供的知識(shí)信息與學(xué)習(xí)模塊之間的相互作用方式,機(jī)器學(xué)習(xí)可以劃分為哪幾種方式?5.建造專家控制系統(tǒng)大體需要哪五個(gè)步驟?6.為了把專家系統(tǒng)技術(shù)應(yīng)用于直接專家控制系統(tǒng),在專家系統(tǒng)設(shè)計(jì)上必須遵循的原那么是什么?三、作圖題:〔每圖4分,共20分〕分?jǐn)?shù)評(píng)卷人1.畫出以下應(yīng)用場(chǎng)合下適當(dāng)?shù)碾`屬函數(shù):〔a〕我們絕對(duì)相信附近的e(t)是“正小”,只有當(dāng)e(t)足夠遠(yuǎn)離時(shí),我們才失去e(t)是“正小”的信心;〔b〕我們相信附近的e(t)是“正大”,而對(duì)于遠(yuǎn)離的e(t)我們很快失去信心;〔c〕隨著e(t)從向左移動(dòng),我們很快失去信心,而隨著e(t)從向右移動(dòng),我們較慢失去信心。2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學(xué)表達(dá)形式,并畫出隸屬函數(shù)圖。四、計(jì)算題:〔每題10分,共20分〕分?jǐn)?shù)評(píng)卷人1.一個(gè)模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計(jì)算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-erroriszeroThenforceiszero。均使用最小化操作表示蘊(yùn)含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊(yùn)含(usingproductopertor);2.設(shè)論域,且試求〔補(bǔ)集〕,〔補(bǔ)集〕五、畫出靜態(tài)多層前向人工神經(jīng)網(wǎng)絡(luò)〔BP網(wǎng)絡(luò)〕的結(jié)構(gòu)圖,并簡(jiǎn)述BP神經(jīng)網(wǎng)絡(luò)的工作過程〔10分〕分?jǐn)?shù)評(píng)卷人。附件1智能控制課程試題D附件1題號(hào)一二三四五六七總分分?jǐn)?shù)合分人:復(fù)查人:一、填空題〔每空1分,共20分〕分?jǐn)?shù)評(píng)卷人1.智能控制是一門新興的學(xué)科,它具有非常廣泛的應(yīng)用領(lǐng)域,例如、、、和。2.智能控制系統(tǒng)的主要類型有:、、、、和。3.一個(gè)理想的智能控制系統(tǒng)應(yīng)具備的性智能能是、、等。4.在設(shè)計(jì)知識(shí)表達(dá)方法時(shí),必須從表達(dá)方法的、、這四個(gè)方面全面加以均衡考慮。5.在一個(gè)神經(jīng)網(wǎng)絡(luò)中,常常根據(jù)處理單元的不同處理功能,將處理單元分成輸入單元、輸出單元和三類。二、簡(jiǎn)答題:〔每題5分,共30分〕分?jǐn)?shù)評(píng)卷人智能控制系統(tǒng)的結(jié)構(gòu)一般有哪幾局部組成,它們之間存在什么關(guān)系?試說(shuō)明智能控制的三元結(jié)構(gòu),并畫出展示它們之間關(guān)系的示意圖。比擬智能控制與傳統(tǒng)控制的特點(diǎn)。4.神經(jīng)網(wǎng)絡(luò)應(yīng)具的四個(gè)根本屬性是什么?5.神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)方法有哪些?6.按照專家系統(tǒng)所求解問題的性質(zhì),可分為哪幾種類型?三、作圖題:〔每圖4分,共20分〕分?jǐn)?shù)評(píng)卷人1.畫出以下應(yīng)用場(chǎng)合下適當(dāng)?shù)碾`屬函數(shù):〔a〕我們絕對(duì)相信附近的e(t)是“正小”,只有當(dāng)e(t)足夠遠(yuǎn)離時(shí),我們才失去e(t)是“正小”的信心;〔b〕我們相信附近的e(t)是“正大”,而對(duì)于遠(yuǎn)離的e(t)我們很快失去信心;〔c〕隨著e(t)從向左移動(dòng),我們很快失去信心,而隨著e(t)從向右移動(dòng),我們較慢失去信心。2.畫出以下兩種情況的隸屬函數(shù):〔a〕精確集合的隸屬函數(shù);〔b〕寫出單一模糊〔singletonfuzzification〕隸屬函數(shù)的數(shù)學(xué)表達(dá)形式,并畫出隸屬函數(shù)圖。四、計(jì)算題:〔每題10分,共20分〕分?jǐn)?shù)評(píng)卷人1.一個(gè)模糊系統(tǒng)的輸入和輸出的隸屬函數(shù)如圖1所示。試計(jì)算以下條件和規(guī)那么的隸屬函數(shù):〔a〕規(guī)那么1:Iferroriszeroandchang-in-erroriszeroThenforceiszero。均使用最小化操作表示蘊(yùn)含(usingminimumopertor);〔b〕規(guī)那么2:Iferroriszeroandchang-in-errorispossmallThenforceisnegsmall。均使用乘積操作表示蘊(yùn)含(usingproductopertor);2.設(shè)論域,且試求〔補(bǔ)集〕,〔補(bǔ)集〕五、試述專家控制系統(tǒng)的工作原理〔共10分〕分?jǐn)?shù)評(píng)卷人Fuzzycontrolofaball-balancingsystemⅠ.IntroductionTheball-balancingsystemconsistsofacartwithanarcmadeoftwoparallelpipesonwhichasteelballrolls.Thecartmovesonapairoftrackshorizontallymountedonaheavysupport(Fig.1).Thecontrolobjectiveistobalancetheballonthetopofthearcandatthesametimeplacethecartinadesiredposition.Itiseducational,becausethelaboratoryrigissufficientlyslowforvisualinspectionofdifferentcontrolstrategiesandthemathematicalmodelissufficientlycomplextobechallenging.Itisaclassicalpendulumproblem,liketheonesusedasabenchmarkproblemforfuzzyandneuralnetcontrollers,assalesmaterialforfuzzydesigntools.Initially,thecartisinthemiddleofthetrackandtheballisontheleftsideofthecurvedarc.Acontrollerpullsthecartlefttogettheballupnearthemiddle,thenthecontrolleradjuststhecartpositionverycarefully,withoutloosingtheball.Fuzzycontrolprovidesaformatmethodologyforrepresenting,manipulatingandimplementingahuman’sheuristicknowledgeabouthowtocontrolasystem[1-3].Here,thefuzzycontroldesignmethodwillbeusedtocontroltheball-balancingsystem.Fig.1Ball-balancinglaboratoryrigⅡ.Designobjectivea).Learningtheoperatingprincipleoftheball-balancingsystem;b).Masteringthefuzzycontrolprincipleanddesignprocedure;c).Enhancingtheprogrammingpowerusingmatlab.Ⅲ.Designrequirementsa).Balancingtheballonthetopofthearcandatthesametimeplacethecartinadesiredposition.b).Comparingthecontrolresultofthelinearcontrollerwiththatofthefuzzycontrollerandthinkingabouttheadvantageoffuzzycontroltoconventionalcontrol.Ⅳ.Designprinciple①M(fèi)odeldescriptionoftheball-balancingsystemIntroducethestatevectorofstatevariables(representscartpositionandrepresentsballangulardeviation)Thenonlinearstate-spaceequations[5]aregivenasfollows:Whererepresentscartradiusofthearc,isthecartweight,representscartdrivingforce,istheballradius,istheballrollingradius,istheballweight,istheballmomentofinertiaandrepresentsgravity.Themodelcanbelinearisedaroundtheorigin.Theapproximationstothetrigonometricfunctionsareintroducedasfollowsandthelinearstate-spacemodelcanbeobtainedasfollowsMatricesaresimplyandgivenasfollowswith,Theactualvaluesoftheconstantsare.②FuzzycontrollerdesignTherearespecificcomponentscharactersticofafuzzycontrollertosupportadesignprocedure.IntheblockdiagraminFig.2,thefuzzycontrollerhasfourmaincomponents.Thefollowingexplainstheblockdiagram.Fig.2FuzzycontrollerarchitectureFuzzificationThefirstcomponentisfuzzification,whichconvertseachpieceofinputdatatodegreesofmembershipbyalookupinoneofseveralmembershipfunctions.Thefuzzificationblockthusmatchestheinputdatawiththeconditionsoftherulestodeterminehowwelltheconditionofeachrulematchesthatparticularinputinstance.RulebaseTherulebasecontainsafuzzylogicquantificationoftheexpert’slinguisticdescriptionofhowtoachievegoodcontrol.c.InferenceengineForeachrule,theinferenceenginelooksupthemembershipvaluesintheconditionoftherule.AggregationTheaggregationoperationisusedwhencalculatingthedegreeoffulfillmentorfiringstrengthoftheconditionofarule.Aggregationisequivalenttofuzzification,whenthereisonlyoneinputtothecontroller.Aggreagtionissometimesalsocalledfufilmentoftheruleorfiringstrength.ActivationTheactivationofaruleisthedeductionoftheconclusion,possiblyreducedbyitsfiringstrength.Arulecanbeweightedbyaprioribyaweightingfactor,whichisitsdegreeofconfidence.Thedegreeofconfidenceisdeterminedbythedesigner,oralearningprogramtryingtoadapttherulestosomeinput-outputrelationship.AccumulationAllactivatedconclusionsareaccumulatedusingthemaxoperation.d.DefuzzificationTheresultingfuzzysetmustbeconvertedtoanumberthatcanbesenttotheprocessesasacontrolsignal.Thisoperationiscalleddefuzzification.Theoutputsetscanbesingletons,buttheycanalsobelinearcombinationsoftheinputs,orevenafunctionoftheinputs.TheT-SfuzzymodelwasproposedbyTakagiandSugenoinanefforttodevelopasystematicapproachtogeneratingfuzzyrulesfromagiveninput-outputdataset[4].Itsrulestructurehasthefollowingform:Whereisafuzzyset,istheinput,isthenumberofinputs,istheoutputspecifiedbytherule,isthetruthvalueparameter.Usingfuzzyinferencebaseduponproduct-sum-gravityatagiveninput,,thefinaloutputofthefuzzymodel,isinferredbytakingtheweightedaverageofwhereisthenumberoffuzzyrules,theweight,impliestheoveralltruthvalueoftherulecalculatedbasedonthedegreesofmembershipvalues:③ComputersimulationThesimulationresultscanbeobtainedbythedesignedprogramusingmatlab.Initialconditionscanbechangedandcontrollergainscanbeadjusted.Thenthedesiredresultscanbeobtained.Ⅴ.Designprocedurea).Themodeloftheball-balancingsystemhasbeengiven;b).Fuzzycontrollerdesign;Fuzzycontroldesignessentiallyamountsto(1)choosingthefuzzycontrollerinputsandoutputs(2)choosingthepreprocessingthatisneededforthecontrollerinputsandpossiblypostprocessingthatisneededfortheoutputs,and(3)designingeachofthefourcomponentsofthefuzzycontrollershowninFig.2.c).Computersimulation.References[1].K.M.PassinoandS.Yurkovich(1997).Fuzzycontrol,1stedn,AddisionWesleyLongman,Colifornia.[2].CaiZixing.IntelligentControl:Principles,TechniquesandApplications.Singapore-NewJersey:WorldScientificPublishers,Dec.1997.[3].Pedrycz,W.(1993).Fuzzycontrolandfuzzysystems,secondedn,WileyandSons,NewYork.[4].Takagi,T.andSugno,M.(1985).Fuzzyidentificationofsystemsanditsapplicationstomodelingandcontrol,IEEETrans.Systems,Man&Cybernetics15(1):116-132.SpeedcontroldesignforavehiclesystemusingfuzzylogicⅠ.IntroductionEngineandotherautomobilesystemsareincreasinglycontrolledelectronically.Thishasledtoimprovedfueleconomy,reducedpollution,

improveddrivingsafetyandreducedmanufacturingcosts.Howevertheautomobile

isahostileenvironment:especiallyintheenginecompartment,wherehightemperature,humidity,vibration,electricalinterferenceandafinecocktailofpotentiallycorrosivepollutantsarepresent.Thesehostilefactorsmaycauseelectricalcontactstodeteriorate,surfaceresistancestofallandsensitiveelectronicsystemstofailinavarietyofmodes.Someofthesefailuremodeswillbebenign,whereasothersmaybedangerousandcauseaccidentsandendangertohumanlife.Acruisecontrolsystem,orvehiclespeedcontrolsystemcankeepavehicle'sspeedconstantonlongrunsandthereforemayhelppreventdriverfatigue[2-5].Ifthedriverhandsoverspeedcontroltoacruisecontrolsystem,thenthecapabilityofthesystemtocontrolspeedtothesetvalueisjustascriticaltosafetyasisthecapabilityofthedrivertocontrolspeedmanually.Sothecruisecontrolsystemdesignisimperativeandimportanttoanautomobile.Ⅱ.Designrequirementsa).Designingcontrollerusingfuzzylogic;b).Makingtheautomobile’sspeedkeepconstant.Ⅲ.ModeldescriptionoftheautomobileThedynamicsoftheautomobile[1]aregivenasfollowsWhereisthecontrolinput(representsathrottleinputandrepresentsabrakeinput),isthemassofthevehicle,isitsaerodynamicdrag,isaconstantfrictionalforce,isthedriving/brakingforce,andsecissaturatedat).Wecanusefuzzycontrolmethodtodesignacruisecontrolsystem.Obviously,thefuzzycruisecontroldesignobjectiveistodevelopafuzzycontrollerthatregulatesavehicle’sspeedtoadriver-specifiedvalue.Ⅳ.SpeedcontroldesignusingfuzzylogicFuzzycontrollogicandneuralnetworksareotherexamplesofmethodologiescontrolengineersareexaminingtoaddressthecontrolofverycomplexsystems.Agoodfuzzycontrollogicapplicationisincruisecontrolarea.1)DesignofPIfuzzycontrollerSupposethatwewishtobeabletotrackasteporrampchangeinthedriver-specifiedspeedvalueveryaccurately.A“PIfuzzycontroller”canbeusedasshowninFig.1.InFig.1,thefuzzycontrollerisdenotedby;andarescalinggains;andistheinputoftheintegrator.Fig.1SpeedcontrolsystemusingaPIfuzzycontrollerFindthedifferentialequationthatdescribestheclosed-loopsystem.Letthestatebeandfindasystemofthreefirst-orderordinarydifferentialequationsthatcanbeusedbytheRunge-Kuttamethodinthesimulationoftheclosed-loopsystem.isusedtorepresentthecontrollerinthedifferentialequations.Forthereferenceinput,threedifferenttestsignalscanbeusedasfollows:a:Testinput1makes=18m/sec(40.3mph)forand=22m/sec(49.2mph)for.b:Testinput2makes=18m/sec(40.3mph)forandincreaseslinearly(aramp)from18to22by,andthenfor.c:Testinput3makes=22forandweuseastheinitialcondition(thisrepresentsstartingthevehicleatrestandsuddenlycommandingalargeincreasespeed).Usefortestinput1and2.Designthefuzzycontrollertogetlessthan2%overshoot,arise-timebetween5and7sec,andasettlingtimeoflessthan8sec(i.e.,reachtowithin2%ofthefinalvaluewithin8sec)forthejumpfrom18to22in“testinput1”thatisdefinedabove.Also,fortherampinput(“testinput2”above)itmusthavelessthan1mph(0.447)steady-stateerror(i.e.,attheendoftheramppartoftheinputhavelessthan1mpherror).Fullyspecifythecontroller(e.g.,themembershipfunctions,rule-basedefuzzification,etc.)andsimulatetheclosed-loopsystemtodemonstratethatitperformsproperly.Provideplotsofandonthesameaxisandonadifferentplot.Fortestinput3findtherise-time,overshoot,2%settlingtime,andsteady-stateerrorfortheclosed-loopsystemforthecontrollerthatyoudesignedtomeetthespecificationsfortestinput1and2.UsingtheRunge-Kuttamethodandintegrationstepsizeof0.01,thesimulationresultscanbeshownasfollows.①.Testinput1Fig.2Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput1②.Testinput2Fig.3Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput2③.Testinput3Fig.4Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput32)DesignofPDfuzzycontrollerSupposethatyouareconcernedwithtrackingastepchangeinaccuratelyandthatyouusethePDfuzzycontrollershowninFig.5.Torepresentthederivative,simplyuseabackwarddifferenceWhereistheintegrationstepsizeinyoursimulation(oritcouldbeyoursamplingperiodinanimplementation).Fig.5SpeedcontrolsystemusingaPDfuzzycontrollerDesignaPDfuzzycontrollertogetlessthan2%overshoot,arise-timebetween7and10sec.andasettlingtimeoflessthan10secfortestinput1definedina).Also,fortherampinput(testinput2in1))itmusthavelessthan1mphsteady-stateerrortotheramp(i.e.,attheendoftheramppartoftheinput,havelessthan1mpherror).Fullyspecifyyourcontrollerandsimulatetheclosed-loopsystemtodemonstratethatitperformsproperly.Provideplotsofandonthesameaxisandonadifferentplot.Inthesimulations,theRunge-Kuttamethodisusedandanintegrationstepsizeof0.01.Assumethatfortestinputs1and2(henceweignorethederivativeinputincomingupwiththestateequationsfortheclosed-loopsystemandsimplyusetheapproximationforc(t)thatisshownabovesothatwehaveatwo-statesystem).Asafinaltestletandusetestinput3definedin1).①.Testinput1Fig.6Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput1②.Testinput2Fig.7Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput2③.Testinput3Fig.8Vehiclespeedsandtheoutputoffuzzycontrollerusingtestinput3Ⅴ.SummaryTokeepanautomobile’sspeedconstant,aspeedcontroldesignmethodusingfuzzylogicispresented.PIfuzzycontrollerandPDfuzzycontrollerdesignschemesaregiventoregulateavehicle’sspeedtoadriver-specifiedvalue.Thesimulationresultsshowthevalidityandoftheproposedtechnique.Thecontroldesignprocedurecanbesummarizedasfollows:ModelingandperformanceobjectivesBasically,theroleofmodelingafuzzycontroldesignisquite

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論