湖南省長沙市岳麓區(qū)長郡梅溪湖達標(biāo)名校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
湖南省長沙市岳麓區(qū)長郡梅溪湖達標(biāo)名校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
湖南省長沙市岳麓區(qū)長郡梅溪湖達標(biāo)名校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
湖南省長沙市岳麓區(qū)長郡梅溪湖達標(biāo)名校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
湖南省長沙市岳麓區(qū)長郡梅溪湖達標(biāo)名校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省長沙市岳麓區(qū)長郡梅溪湖達標(biāo)名校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.碳納米管的硬度與金剛石相當(dāng),卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學(xué)記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米2.方程的解是().A. B. C. D.3.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點O都落在直線MN上,直線MN∥AB,則點O是△ABC的()A.外心 B.內(nèi)心 C.三條中線的交點 D.三條高的交點4.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標(biāo)為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)5.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°6.如圖,半徑為3的⊙A經(jīng)過原點O和點C(0,2),B是y軸左側(cè)⊙A優(yōu)弧上一點,則tan∠OBC為()A. B.2 C. D.7.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.8.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.129.將三粒均勻的分別標(biāo)有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.10.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達式為()A.y= B.y= C.y= D.y=﹣二、填空題(共7小題,每小題3分,滿分21分)11.已知a1=,a2=,a3=,a4=,a5=,…,則an=_____.(n為正整數(shù)).12.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.13.在函數(shù)y=x-4中,自變量x的取值范圍是_____.14.如圖,已知拋物線與坐標(biāo)軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標(biāo)為____________________.15.分解因式:4m2﹣16n2=_____.16.使有意義的的取值范圍是__________.17.分解因式:2x2﹣8xy+8y2=.三、解答題(共7小題,滿分69分)18.(10分)某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準(zhǔn)備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只19.(5分)現(xiàn)有兩個紙箱,每個紙箱內(nèi)各裝有4個材質(zhì)、大小都相同的乒乓球,其中一個紙箱內(nèi)4個小球上分別寫有1、2、3、4這4個數(shù),另一個紙箱內(nèi)4個小球上分別寫有5、6、7、8這4個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數(shù)和3的倍數(shù)的概率;(2)你認(rèn)為這個游戲公平嗎?為什么?若你認(rèn)為不公平,請你修改得分規(guī)則,使游戲?qū)﹄p方公平.20.(8分)如圖①,二次函數(shù)的拋物線的頂點坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最???若存在,求出這個最小值及點G、H的坐標(biāo);若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.21.(10分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.22.(10分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)23.(12分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作,設(shè)該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系:停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關(guān)系式;根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?24.(14分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).求一次函數(shù)和反比例函數(shù)解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據(jù)圖象,直接寫出不等式的解集.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負(fù)指數(shù)科學(xué)計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).2、B【解析】

直接解分式方程,注意要驗根.【詳解】解:=0,方程兩邊同時乘以最簡公分母x(x+1),得:3(x+1)-7x=0,解這個一元一次方程,得:x=,經(jīng)檢驗,x=是原方程的解.故選B.【點睛】本題考查了解分式方程,解分式方程不要忘記驗根.3、B【解析】

利用平行線間的距離相等,可知點到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點作于,作于E,作于.由題意可知:,,,∴,∴圖中的點是三角形三個內(nèi)角的平分線的交點,點是的內(nèi)心,故選B.【點睛】本題考查平行線間的距離,角平分線定理,三角形的內(nèi)心,解題的關(guān)鍵是判斷出.4、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標(biāo)特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標(biāo)可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當(dāng)x=0時,y=2,則B(0,2);當(dāng)y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應(yīng)用,熟練掌握相關(guān)知識點是解答的關(guān)鍵.5、C【解析】

根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質(zhì):兩直線平行,同位角相等.快速解題的關(guān)鍵是牢記平行線的性質(zhì).6、C【解析】試題分析:連結(jié)CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據(jù)勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數(shù)的定義.7、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個部分,列出方程即可.8、B【解析】

首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當(dāng)弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點睛】本題結(jié)合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.9、C【解析】

三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構(gòu)成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標(biāo)有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.10、C【解析】

由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負(fù),至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關(guān)于反比例函數(shù)的題目,需結(jié)合反比例函數(shù)中系數(shù)k的幾何意義解答;二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

觀察分母的變化為n的1次冪加1、2次冪加1、3次冪加1…,n次冪加1;分子的變化為:3、5、7、9…2n+1.【詳解】解:∵a1=,a2=,a3=,a4=,a5=,…,∴an=,故答案為:.【點睛】本題考查學(xué)生通過觀察、歸納、抽象出數(shù)列的規(guī)律的能力,要求學(xué)生首先分析題意,找到規(guī)律,并進行推導(dǎo)得出答案.12、-1【解析】

利用反比例函數(shù)的性質(zhì),即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,

在每個象限內(nèi),y隨著x的增大而增大,

反比例函數(shù)圖象在第一、三象限,

的值可以取等,答案不唯一

故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.13、x≥4【解析】試題分析:二次根式有意義的條件:二次根號下的數(shù)為非負(fù)數(shù),二次根式才有意義.由題意得,.考點:二次根式有意義的條件點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握二次根式有意義的條件,即可完成.14、(,),(-4,-5)【解析】

求出點A、B、C的坐標(biāo),當(dāng)D在x軸下方時,設(shè)直線CD與x軸交于點E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標(biāo),再求出CE的直線解析式,聯(lián)立拋物線即可求出D的坐標(biāo),再由對稱性即可求出D在x軸上方時的坐標(biāo).【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當(dāng)點D在x軸下方時,∴設(shè)直線CD與x軸交于點E,過點E作EG⊥CB于點G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設(shè)EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設(shè)CE的解析式為y=mx+n,交拋物線于點D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯(lián)立解得:x=-4或x=0,∴D2的坐標(biāo)為(-4,-5)設(shè)點E關(guān)于BC的對稱點為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設(shè)CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯(lián)立解得:x=0或x=-∴D1的坐標(biāo)為(-,)故答案為(-,)或(-4,-5)【點睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是根據(jù)對稱性求出相關(guān)點的坐標(biāo),利用直線解析式以及拋物線的解析式即可求出點D的坐標(biāo).15、4(m+2n)(m﹣2n).【解析】

原式提取4后,利用平方差公式分解即可.【詳解】解:原式=4().故答案為【點睛】本題考查提公因式法與公式法的綜合運用,解題的關(guān)鍵是熟練掌握因式分解的方法.16、【解析】

根據(jù)二次根式的被開方數(shù)為非負(fù)數(shù)求解即可.【詳解】由題意可得:,解得:.所以答案為.【點睛】本題主要考查了二次根式的性質(zhì),熟練掌握相關(guān)概念是解題關(guān)鍵.17、1(x﹣1y)1【解析】試題分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案為:1(x﹣1y)1.考點:提公因式法與公式法的綜合運用三、解答題(共7小題,滿分69分)18、(1)最多可以做25只豎式箱子;(2)能制作豎式、橫式兩種無蓋箱子分別為5只和30只;(3)47或1.【解析】

表示出豎式箱子所用板材數(shù)量進而得出總金額即可得出答案;設(shè)制作豎式箱子a只,橫式箱子b只,利用A型板材65張、B型板材110張,得出方程組求出答案;設(shè)裁剪出B型板材m張,則可裁A型板材張,進而得出方程組求出符合題意的答案.【詳解】解:設(shè)最多可制作豎式箱子x只,則A型板材x張,B型板材4x張,根據(jù)題意得解得.答:最多可以做25只豎式箱子.設(shè)制作豎式箱子a只,橫式箱子b只,根據(jù)題意,得,解得:.答:能制作豎式、橫式兩種無蓋箱子分別為5只和30只.設(shè)裁剪出B型板材m張,則可裁A型板材張,由題意得:,整理得,,.豎式箱子不少于20只,或22,這時,或,.則能制作兩種箱子共:或.故答案為47或1.【點睛】本題考查了一元一次不等式的應(yīng)用以及二元一次方程組的應(yīng)用,解題的關(guān)鍵是理解題意,列出等式.19、(1)34(2)游戲不公平,修改得分規(guī)則為:把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得7分,若得到的積是3的倍數(shù),則乙得12分【解析】試題分析:(1)列表如下:共有16種情況,且每種情況出現(xiàn)的可能性相同,其中,乘積是2的倍數(shù)的有12種,乘積是3的倍數(shù)的有7種.∴P(兩數(shù)乘積是2的倍數(shù))=P(兩數(shù)乘積是3的倍數(shù))=(2)游戲不公平,修改得分規(guī)則為:把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得7分,若得到的積是3的倍數(shù),則乙得12分考點:概率的計算點評:題目難度不大,考查基本概率的計算,屬于基礎(chǔ)題。本題主要是第二問有點難度,對游戲規(guī)則的確定,需要一概率為基礎(chǔ)。20、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負(fù)半軸上取一點I,使得點F與點I關(guān)于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關(guān)于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時,y=1∴點F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點F與點I關(guān)于x軸對稱,∴點I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時,y=1;當(dāng)y=0時,x=-12∴點G坐標(biāo)為(-1,1),點H坐標(biāo)為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設(shè)過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時,y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標(biāo)為(-4,0)12分【解析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應(yīng)將邊長進行轉(zhuǎn)換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AOM相似的P的坐標(biāo)(-4,0)21、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質(zhì)和菱形的性質(zhì)即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論