廣東省惠州市實驗中學(xué)2024年高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁
廣東省惠州市實驗中學(xué)2024年高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁
廣東省惠州市實驗中學(xué)2024年高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁
廣東省惠州市實驗中學(xué)2024年高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁
廣東省惠州市實驗中學(xué)2024年高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省惠州市實驗中學(xué)2024年高考臨考沖刺數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.2.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,3.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.4.已知向量,,則與共線的單位向量為()A. B.C.或 D.或5.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.6.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點,若,則實數(shù)的值為()A.1 B.2 C.-1 D.-27.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.8.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.9.已知集合,,則為()A. B. C. D.10.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應(yīng)的極大值為,則的值為()A. B. C. D.11.設(shè),則()A. B. C. D.12.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點所在的區(qū)間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)14.已知、為正實數(shù),直線截圓所得的弦長為,則的最小值為__________.15.一個四面體的頂點在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.16.在平面直角坐標(biāo)系中,曲線上任意一點到直線的距離的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.18.(12分)[選修45:不等式選講]已知都是正實數(shù),且,求證:.19.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大?。唬?)若,且直線與平面所成角為,求的值.20.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.21.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時,若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實數(shù)a的取值范圍.22.(10分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.2、B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.3、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.4、D【解析】

根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標(biāo)運算以及共線定理和單位向量的定義.5、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.6、D【解析】

由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O(shè)在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.7、B【解析】

由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復(fù)數(shù)的運算,屬于基礎(chǔ)題8、D【解析】

依次將選項中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時,在上不單調(diào),故A不正確;當(dāng)時,在上單調(diào)遞減,故B不正確;當(dāng)時,在上不單調(diào),故C不正確;當(dāng)時,在上單調(diào)遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.9、C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.10、C【解析】

對此分段函數(shù)的第一部分進(jìn)行求導(dǎo)分析可知,當(dāng)時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時,,顯然當(dāng)時有,,∴經(jīng)單調(diào)性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應(yīng)極值,,∴故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達(dá)式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對數(shù)列和函數(shù)的熟悉程度高,為中檔題11、C【解析】試題分析:,.故C正確.考點:復(fù)合函數(shù)求值.12、B【解析】

根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因為,所以函數(shù)的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數(shù)的圖象及函數(shù)的零點,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)組合的知識,結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質(zhì)上每個因式中各取一項的乘積,轉(zhuǎn)化為組合的知識,屬中檔題.14、【解析】

先根據(jù)弦長,半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.15、【解析】

將四面體補(bǔ)充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補(bǔ)體法,由空間點坐標(biāo)可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補(bǔ)體法,通過補(bǔ)體得到長方體的外接球從而得解,屬于基礎(chǔ)題.16、【解析】

解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標(biāo),再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點的切線與直線平行,則,解得,當(dāng)時,到直線的距離;當(dāng)時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉(zhuǎn)化為利用切線與直線平行來找出切點,轉(zhuǎn)化為切點到直線的距離,也可以設(shè)曲線上的動點坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由兩角差的正弦公式計算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因為,所以.因為,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【點睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.18、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式19、(1);(2).【解析】

(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標(biāo)系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結(jié).因為∥,所以∥.因為,所以.因為側(cè)面為等邊三角形,所以又因為平面平面,平面平面,平面,所以平面,所以兩兩垂直.以為空間坐標(biāo)系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,因為,則,,.設(shè)平面的法向量為,則,即.取,則,所以.又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即,化簡得,所以,符合題意.【點睛】本題考查利用向量坐標(biāo)法求面面角、線面角,涉及到面面垂直的性質(zhì)定理的應(yīng)用,做好此類題的關(guān)鍵是準(zhǔn)確寫出點的坐標(biāo),是一道中檔題.20、(1)證明見解析(2)【解析】

(1)利用線段長度得到與間的垂直關(guān)系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標(biāo)系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結(jié)果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標(biāo)原點,分別以、、為軸、軸、軸建立空間直角坐標(biāo)系,則,,,,,,,∵,∴,設(shè)是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【點睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.21、(Ⅰ);(Ⅱ)?!窘馕觥?/p>

(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當(dāng)時,原不等式可化為,此時不成立;當(dāng)時,原不等式可化為,解得,即;當(dāng)時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當(dāng)且僅當(dāng)時等號成立,所以.當(dāng)時,,所以.所以,解得,故實數(shù)的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.22、(1);(2)見解析【解析】

(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論