版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年山東省聊城冠縣聯(lián)考中考適應(yīng)性考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°2.十九大報(bào)告指出,我國(guó)目前經(jīng)濟(jì)保持了中高速增長(zhǎng),在世界主要國(guó)家中名列前茅,國(guó)內(nèi)生產(chǎn)總值從54萬億元增長(zhǎng)80萬億元,穩(wěn)居世界第二,其中80萬億用科學(xué)記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10133.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°4.二次函數(shù)的對(duì)稱軸是A.直線 B.直線 C.y軸 D.x軸5.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點(diǎn)在第三象限,且過點(diǎn)(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<06.如圖,矩形ABCD的頂點(diǎn)A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數(shù)為()A.30° B.45° C.60° D.75°7.計(jì)算(﹣ab2)3的結(jié)果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b68.葉綠體是植物進(jìn)行光合作用的場(chǎng)所,葉綠體DNA最早發(fā)現(xiàn)于衣藻葉綠體,長(zhǎng)約0.00005米.其中,0.00005用科學(xué)記數(shù)法表示為()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣39.一個(gè)盒子內(nèi)裝有大小、形狀相同的四個(gè)球,其中紅球1個(gè)、綠球1個(gè)、白球2個(gè),小明摸出一個(gè)球不放回,再摸出一個(gè)球,則兩次都摸到白球的概率是()A. B. C. D.10.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點(diǎn)B恰好落在AC邊上的點(diǎn)E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,直線a∥b,∠l=60°,∠2=40°,則∠3=_____.12.因式分解:a2b+2ab+b=.13.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關(guān)于x的一元二次方程﹣x2+bx+c=0的解為_____.14.已知:如圖,△ABC的面積為12,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),則四邊形BCED的面積為_____.15.方程的根是________.16.如圖,矩形中,,,將矩形沿折疊,點(diǎn)落在點(diǎn)處.則重疊部分的面積為______.三、解答題(共8題,共72分)17.(8分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為______;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;該校共有1200名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為1200×=108”,請(qǐng)你判斷這種說法是否正確,并說明理由.18.(8分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),連接CD,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)A作AE⊥AC交DH的延長(zhǎng)線于點(diǎn)E.(1)求線段DE的長(zhǎng)度;(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長(zhǎng)最小時(shí),△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.19.(8分)計(jì)算:2sin30°﹣|1﹣|+()﹣120.(8分)已知:不等式≤2+x(1)求不等式的解;(2)若實(shí)數(shù)a滿足a>2,說明a是否是該不等式的解.21.(8分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),AC∥OP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設(shè)OP=AC,求∠CPO的正弦值;(3)設(shè)AC=9,AB=15,求d+f的取值范圍.22.(10分)某市出租車計(jì)費(fèi)方法如圖所示,x(km)表示行駛里程,y(元)表示車費(fèi),請(qǐng)根據(jù)圖象回答下列問題:出租車的起步價(jià)是多少元?當(dāng)x>3時(shí),求y關(guān)于x的函數(shù)關(guān)系式;若某乘客有一次乘出租車的車費(fèi)為32元,求這位乘客乘車的里程.23.(12分)如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點(diǎn)E,過點(diǎn)C作AD的垂線交AB的延長(zhǎng)線于點(diǎn)G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數(shù);(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設(shè)△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.24.美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動(dòng)中,小林在南濱河路上的A,B兩點(diǎn)處,利用測(cè)角儀分別對(duì)北岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點(diǎn)睛:本題考查了平行線的性質(zhì),對(duì)頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ),兩條平行線之間的距離處處相等.2、B【解析】80萬億用科學(xué)記數(shù)法表示為8×1.故選B.點(diǎn)睛:本題考查了科學(xué)計(jì)數(shù)法,科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).3、C【解析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點(diǎn):圓周角定理4、C【解析】
根據(jù)頂點(diǎn)式y(tǒng)=a(x-h)2+k的對(duì)稱軸是直線x=h,找出h即可得出答案.【詳解】解:二次函數(shù)y=x2的對(duì)稱軸為y軸.
故選:C.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì),解題關(guān)鍵是頂點(diǎn)式y(tǒng)=a(x-h)2+k的對(duì)稱軸是直線x=h,頂點(diǎn)坐標(biāo)為(h,k).5、D【解析】
由二次函數(shù)的解析式可知,當(dāng)x=1時(shí),所對(duì)應(yīng)的函數(shù)值y=a+b-2,把點(diǎn)(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點(diǎn)在第三象限,可以判斷出a與b的符號(hào),進(jìn)而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點(diǎn)在第三象限,且經(jīng)過點(diǎn)(1,0)∴該函數(shù)是開口向上的,a>0
∵y=ax2+bx﹣2過點(diǎn)(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點(diǎn)在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點(diǎn)睛】本題考查大小二次函數(shù)的圖像,熟練掌握?qǐng)D像的性質(zhì)是解題的關(guān)鍵.6、C【解析】試題分析:過點(diǎn)D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點(diǎn):1矩形;2平行線的性質(zhì).7、D【解析】
根據(jù)積的乘方與冪的乘方計(jì)算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點(diǎn)睛】本題主要考查冪的乘方與積的乘方,解題的關(guān)鍵是掌握積的乘方與冪的乘方的運(yùn)算法則.8、C【解析】絕對(duì)值小于1的負(fù)數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定,0.00005=,故選C.9、C【解析】
畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點(diǎn)睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準(zhǔn)確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關(guān)鍵.10、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、80°【解析】
根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計(jì)算即可.【詳解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案為:80°.【點(diǎn)睛】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.12、b2【解析】該題考查因式分解的定義首先可以提取一個(gè)公共項(xiàng)b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b213、x1=1,x2=﹣1.【解析】
直接觀察圖象,拋物線與x軸交于1,對(duì)稱軸是x=﹣1,所以根據(jù)拋物線的對(duì)稱性可以求得拋物線與x軸的另一交點(diǎn)坐標(biāo),從而求得關(guān)于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個(gè)交點(diǎn)為(1,0),對(duì)稱軸為x=﹣1,∴拋物線與x軸的另一交點(diǎn)坐標(biāo)為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【點(diǎn)睛】本題考查了二次函數(shù)與一元二次方程的關(guān)系.一元二次方程-x2+bx+c=0的解實(shí)質(zhì)上是拋物線y=-x2+bx+c與x軸交點(diǎn)的橫坐標(biāo)的值.14、1【解析】【分析】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關(guān)于x的方程,解之可得.【詳解】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,∵點(diǎn)D、E分別是邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點(diǎn)睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質(zhì).15、x=2【解析】分析:解此方程首先要把它化為我們熟悉的方程(一元二次方程),解新方程,檢驗(yàn)是否符合題意,即可求得原方程的解.詳解:據(jù)題意得:2+2x=x2,∴x2﹣2x﹣2=0,∴(x﹣2)(x+1)=0,∴x1=2,x2=﹣1.∵≥0,∴x=2.故答案為:2.點(diǎn)睛:本題考查了學(xué)生綜合應(yīng)用能力,解方程時(shí)要注意解題方法的選擇,在求值時(shí)要注意解的檢驗(yàn).16、10【解析】
根據(jù)翻折的特點(diǎn)得到,.設(shè),則.在中,,即,解出x,再根據(jù)三角形的面積進(jìn)行求解.【詳解】∵翻折,∴,,又∵,∴,∴.設(shè),則.在中,,即,解得,∴,∴.【點(diǎn)睛】此題主要考查勾股定理,解題的關(guān)鍵是熟知翻折的性質(zhì)及勾股定理的應(yīng)用.三、解答題(共8題,共72分)17、(1)144°;(2)補(bǔ)圖見解析;(3)160人;(4)這個(gè)說法不正確,理由見解析.【解析】
試題分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案為144°;(2)“經(jīng)常參加”的人數(shù)為:300×40%=120人,喜歡籃球的學(xué)生人數(shù)為:120﹣27﹣33﹣20=120﹣80=40人;補(bǔ)全統(tǒng)計(jì)圖如圖所示;(3)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù)約為:1200×=160人;(4)這個(gè)說法不正確.理由如下:小明得到的108人是經(jīng)常參加課外體育鍛煉的男生中最喜歡的項(xiàng)目是乒乓球的人數(shù),而全校偶爾參加課外體育鍛煉的男生中也會(huì)有最喜歡乒乓球的,因此應(yīng)多于108人.考點(diǎn):①條形統(tǒng)計(jì)圖;②扇形統(tǒng)計(jì)圖.18、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長(zhǎng)度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對(duì)應(yīng)邊成比例求得EH的長(zhǎng),進(jìn)繼而求得DE的長(zhǎng);(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長(zhǎng)為,翻折之后形成邊長(zhǎng)為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對(duì)于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(﹣2,﹣),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對(duì)稱軸為:直線m=<2,開口向下,∴m=時(shí),△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長(zhǎng)為,翻折之后形成邊長(zhǎng)為的菱形C′F′P′F″,且F′F″=4,1)當(dāng)KF′=KF″時(shí),如圖3,點(diǎn)K在F′F″的垂直平分線上,所以K與B重合,坐標(biāo)為(3,0),∴OK=3;2)當(dāng)F′F″=F′K時(shí),如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當(dāng)F″F′=F″K時(shí),如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點(diǎn)睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點(diǎn)和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.19、4﹣【解析】
原式利用絕對(duì)值的代數(shù)意義,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪的法則計(jì)算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.20、(1)x≥﹣1;(2)a是不等式的解.【解析】
(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1可得.
(2)根據(jù)不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號(hào)得:2﹣x≤6+3x,移項(xiàng)、合并同類項(xiàng)得:﹣4x≤4,系數(shù)化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【點(diǎn)睛】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關(guān)鍵21、(1)詳見解析;(2);(3)【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OCA,由平行線的性質(zhì)得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)過O作OD⊥AC于D,根據(jù)相似三角形的性質(zhì)得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;
(3)連接BC,根據(jù)勾股定理得到BC==12,當(dāng)M與A重合時(shí),得到d+f=12,當(dāng)M與B重合時(shí),得到d+f=9,于是得到結(jié)論.【詳解】(1)連接OC,
∵OA=OC,
∴∠A=∠OCA,
∵AC∥OP,
∴∠A=∠BOP,∠ACO=∠COP,
∴∠COP=∠BOP,
∵PB是⊙O的切線,AB是⊙O的直徑,
∴∠OBP=90°,
在△POC與△POB中,,
∴△COP≌△BOP,
∴∠OCP=∠OBP=90°,
∴PC是⊙O的切線;
(2)過O作OD⊥AC于D,
∴∠ODC=∠OCP=90°,CD=AC,
∵∠DCO=∠COP,
∴△ODC∽△PCO,
∴,
∴CD?OP=OC2,
∵OP=AC,
∴AC=OP,
∴CD=OP,
∴OP?OP=OC2
∴,
∴sin∠CPO=;
(3)連接BC,
∵AB是⊙O的直徑,
∴AC⊥BC,
∵AC=9,AB=1,
∴BC==12,
當(dāng)CM⊥AB時(shí),
d=AM,f=BM,
∴d+f=AM+BM=1,
當(dāng)M與B重合時(shí),
d=9,f=0,
∴d+f=9,
∴d+f的取值范圍是:9≤d+f≤1.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線的性質(zhì),圓周角定理,正確的作出輔助線是解題的關(guān)鍵.22、(1)y=2x+2(2)這位乘客乘車的里程是15km【解析】
(1)根據(jù)函數(shù)圖象可以得出出租車的起步價(jià)是8元,設(shè)當(dāng)x>3時(shí),y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),運(yùn)用待定系數(shù)法就可以求出結(jié)論;
(2)將y=32代入(1)的解析式就可以求出x的值.【詳解】(1)由圖象得:出租車的起步價(jià)是8元;設(shè)當(dāng)x>3時(shí),y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),由函數(shù)圖象,得,解得:故y與x的函數(shù)關(guān)系式為:y=2x+2;(2)∵32元>8元,∴當(dāng)y=32時(shí),32=2x+2,x=15答:這位乘客乘車的里程是15km.23、(1)48°(1)證明見解析(3)【解析】
(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;
(1)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對(duì)的圓周角相等,根據(jù)同弧所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遠(yuǎn)程數(shù)字高清視頻監(jiān)控系統(tǒng)系統(tǒng)培訓(xùn)、測(cè)試和驗(yàn)收
- 三年級(jí)上冊(cè)第三單元備課教案 10在牛肚子里旅行
- 語文《談中國(guó)詩》說課稿
- 證券銀證轉(zhuǎn)賬協(xié)議三篇
- 系統(tǒng)架構(gòu)規(guī)劃與優(yōu)化培訓(xùn)
- 2024年商品化色漿項(xiàng)目建議書
- 監(jiān)理期限合同范本
- 明星買房合同范本
- 河南省三門峽市(2024年-2025年小學(xué)五年級(jí)語文)統(tǒng)編版專題練習(xí)(下學(xué)期)試卷及答案
- 外包安保合同范本
- 專病數(shù)據(jù)模塊及數(shù)據(jù)庫建設(shè)需求
- 一老一小交通安全宣傳
- 城市社區(qū)居家養(yǎng)老服務(wù)體系建設(shè)研究-以我國(guó)椒江區(qū)、田家庵區(qū)為例的開題報(bào)告
- 重點(diǎn)部位感染與預(yù)防控制
- 高??爝f包裝回收現(xiàn)狀分析及對(duì)策-以廣東省中山市三大高校為例
- 初創(chuàng)企業(yè)財(cái)務(wù)管理計(jì)劃書
- 新民事訴訟書范文追債通用21篇
- 100ml生理鹽水的配制講解
- 國(guó)家開放大學(xué)《Python語言基礎(chǔ)》實(shí)驗(yàn)3:超市數(shù)據(jù)統(tǒng)計(jì)分析參考答案
- 加油站消防安全基本常識(shí)
- 熱力集團(tuán)招聘試題
評(píng)論
0/150
提交評(píng)論