2023-2024學(xué)年陜西省安康市漢濱重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第1頁
2023-2024學(xué)年陜西省安康市漢濱重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第2頁
2023-2024學(xué)年陜西省安康市漢濱重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第3頁
2023-2024學(xué)年陜西省安康市漢濱重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第4頁
2023-2024學(xué)年陜西省安康市漢濱重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年陜西省安康市漢濱重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.太原市出租車的收費標(biāo)準(zhǔn)是:白天起步價8元(即行駛距離不超過3km都需付8元車費),超過3km以后,每增加1km,加收1.6元(不足1km按1km計),某人從甲地到乙地經(jīng)過的路程是xkm,出租車費為16元,那么x的最大值是()A.11 B.8 C.7 D.52.如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標(biāo)為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)3.cos45°的值是(

)A.

B.

C.

D.14.下列計算中,正確的是()A. B. C. D.5.如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點A的坐標(biāo)為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y=kx(k>0,x>0)的圖象經(jīng)過點C,則A.33B.32C.26.關(guān)于的方程有實數(shù)根,則滿足()A. B.且 C.且 D.7.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a(chǎn)+a2=a38.下列因式分解正確的是()A. B.C. D.9.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點,則y1>y1.其中正確的個數(shù)是()A.1 B.3 C.4 D.510.已知直線與直線的交點在第一象限,則的取值范圍是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.寫出一個大于3且小于4的無理數(shù):___________.12.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,A的坐標(biāo)為(1,),則點C的坐標(biāo)為_____.13.計算a3÷a2?a的結(jié)果等于_____.14.分解因式:mx2﹣6mx+9m=_____.15.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時間忽略不計),小剛與學(xué)校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達(dá)學(xué)校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.16.定義:在平面直角坐標(biāo)系xOy中,把從點P出發(fā)沿縱或橫方向到達(dá)點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個小區(qū)的坐標(biāo)分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標(biāo)為_____.三、解答題(共8題,共72分)17.(8分)(11分)閱讀資料:如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點的坐標(biāo)分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖1,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當(dāng)⊙O的半徑為r時,⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應(yīng)用:如圖3,⊙P與x軸相切于原點O,P點坐標(biāo)為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.18.(8分)湯姆斯杯世界男子羽毛球團(tuán)體賽小組賽比賽規(guī)則:兩隊之間進(jìn)行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機(jī)會相同.(1)若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;(2)現(xiàn)甲隊在前兩局比賽中已取得2:0的領(lǐng)先,那么甲隊最終獲勝的概率是多少?19.(8分)實踐體驗:(1)如圖1:四邊形ABCD是矩形,試在AD邊上找一點P,使△BCP為等腰三角形;(2)如圖2:矩形ABCD中,AB=13,AD=12,點E在AB邊上,BE=3,點P是矩形ABCD內(nèi)或邊上一點,且PE=5,點Q是CD邊上一點,求PQ得最值;問題解決:(3)如圖3,四邊形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,點E在AB邊上,BE=2,點P是四邊形ABCD內(nèi)或邊上一點,且PE=2,求四邊形PADC面積的最值.20.(8分)我市某中學(xué)舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.21.(8分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;四邊形BFDE是平行四邊形.22.(10分)某同學(xué)報名參加學(xué)校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠(yuǎn),跳高(分別用T1、T2表示).(1)該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率P為;(2)該同學(xué)從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;(3)該同學(xué)從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.23.(12分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.24.如圖,△ABC內(nèi)接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當(dāng)AB=8,CE=2時,求⊙O直徑的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)等量關(guān)系,即(經(jīng)過的路程﹣3)×1.6+起步價2元≤1.列出不等式求解.【詳解】可設(shè)此人從甲地到乙地經(jīng)過的路程為xkm,根據(jù)題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經(jīng)過的路程最多為2km.故選B.【點睛】考查了一元一次方程的應(yīng)用.關(guān)鍵是掌握正確理解題意,找出題目中的數(shù)量關(guān)系.2、B【解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標(biāo)為(1.5,),∴B3的坐標(biāo)為(1.5+1322,),故選B.點睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉(zhuǎn)6次,圖形向右平移2”是解題的關(guān)鍵.3、C【解析】

本題主要是特殊角的三角函數(shù)值的問題,求解本題的關(guān)鍵是熟悉特殊角的三角函數(shù)值.【詳解】cos45°=.故選:C.【點睛】本題考查特殊角的三角函數(shù)值.4、D【解析】

根據(jù)積的乘方、合并同類項、同底數(shù)冪的除法以及冪的乘方進(jìn)行計算即可.【詳解】A、(2a)3=8a3,故本選項錯誤;B、a3+a2不能合并,故本選項錯誤;C、a8÷a4=a4,故本選項錯誤;D、(a2)3=a6,故本選項正確;故選D.【點睛】本題考查了積的乘方、合并同類項、同底數(shù)冪的除法以及冪的乘方,掌握運算法則是解題的關(guān)鍵.5、D【解析】解:∵四邊形ABCD是平行四邊形,點A的坐標(biāo)為(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故選D.點睛:本題考查了平行四邊形的性質(zhì),掌握平行四邊形的性質(zhì)以及反比例函數(shù)圖象上點的坐標(biāo)特征是解題的關(guān)鍵.6、A【解析】

分類討論:當(dāng)a=5時,原方程變形一元一次方程,有一個實數(shù)解;當(dāng)a≠5時,根據(jù)判別式的意義得到a≥1且a≠5時,方程有兩個實數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當(dāng)a=5時,原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數(shù)根,所以a的取值范圍為a≥1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.7、C【解析】分析:直接利用冪的乘方運算法則以及同底數(shù)冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數(shù)冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關(guān)運算法則是解題關(guān)鍵.8、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結(jié)論.【詳解】解:D選項中,多項式x2-x+2在實數(shù)范圍內(nèi)不能因式分解;

選項B,A中的等式不成立;

選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點睛】本題考查因式分解,解決問題的關(guān)鍵是掌握提公因式法和公式法的方法.9、D【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【點睛】考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運用數(shù)形結(jié)合的思想.10、C【解析】

根據(jù)題意畫出圖形,利用數(shù)形結(jié)合,即可得出答案.【詳解】根據(jù)題意,畫出圖形,如圖:當(dāng)時,兩條直線無交點;當(dāng)時,兩條直線的交點在第一象限.故選:C.【點睛】本題主要考查兩個一次函數(shù)的交點問題,能夠數(shù)形結(jié)合是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、如等,答案不唯一.【解析】

本題考查無理數(shù)的概念.無限不循環(huán)小數(shù)叫做無理數(shù).介于和之間的無理數(shù)有無窮多個,因為,故而9和16都是完全平方數(shù),都是無理數(shù).12、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(biāo)(﹣,1),故答案為(,1).點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是學(xué)會添加常用的輔助線,構(gòu)造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負(fù)數(shù),而坐標(biāo)可以是負(fù)數(shù),在由距離求坐標(biāo)時,需要加上恰當(dāng)?shù)姆?13、a1【解析】

根據(jù)同底數(shù)冪的除法法則和同底數(shù)冪乘法法則進(jìn)行計算即可.【詳解】解:原式=a3﹣1+1=a1.故答案為a1.【點睛】本題考查了同底數(shù)冪的乘除法,關(guān)鍵是掌握計算法則.14、m(x﹣3)1.【解析】

先把m提出來,然后對括號里面的多項式用公式法分解即可?!驹斀狻縨=m(=m【點睛】解題的關(guān)鍵是熟練掌握因式分解的方法。15、①②③【解析】

由公交車在7至12分鐘時間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進(jìn)而可知小剛上公交車的時間;由上公交車到他到達(dá)學(xué)校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進(jìn)而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數(shù)的應(yīng)用.16、(1,﹣2).【解析】

若設(shè)M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).三、解答題(共8題,共72分)17、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應(yīng)用:①見解析②點Q的坐標(biāo)為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:問題拓展:設(shè)A(x,y)為⊙P上任意一點,則有AP=r,根據(jù)閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應(yīng)用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當(dāng)點Q在線段BP中點時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點坐標(biāo)可求出OP、OB.過點Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質(zhì)可求出QH、BH,進(jìn)而求出OH,就可得到點Q的坐標(biāo),然后運用問題拓展中的結(jié)論就可解決問題.試題解析:解:問題拓展:設(shè)A(x,y)為⊙P上任意一點,∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應(yīng)用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點O,P,A,B距離都相等的點Q.當(dāng)點Q在線段BP中點時,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時點Q到四點O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點坐標(biāo)為(0,6),∴OP=6,OB=OP=3.過點Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點Q的坐標(biāo)為(4,3),∴OQ==5,∴以Q為圓心,以O(shè)Q為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點:圓的綜合題;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);直角三角形斜邊上的中線;勾股定理;切線的判定與性質(zhì);相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義.18、(1)12;(2)【解析】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結(jié)果數(shù),再找出甲至少勝一局的結(jié)果數(shù),然后根據(jù)概率公式求.詳解:(1)甲隊最終獲勝的概率是12(2)畫樹狀圖為:共有8種等可能的結(jié)果數(shù),其中甲至少勝一局的結(jié)果數(shù)為7,所以甲隊最終獲勝的概率=78點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.19、(1)見解析;(2)PQmin=7,PQmax=13;(3)Smin=,Smax=18.【解析】

(1)根據(jù)全等三角形判定定理求解即可.(2)以E為圓心,以5為半徑畫圓,①當(dāng)E、P、Q三點共線時最PQ最小,②當(dāng)P點在位置時PQ最大,分類討論即可求解.(3)以E為圓心,以2為半徑畫圓,分類討論出P點在位置時,四邊形PADC面積的最值即可.【詳解】(1)當(dāng)P為AD中點時,,△BCP為等腰三角形.(2)以E為圓心,以5為半徑畫圓①當(dāng)E、P、Q三點共線時最PQ最小,PQ的最小值是12-5=7.②當(dāng)P點在位置時PQ最大,PQ的最大值是(3)以E為圓心,以2為半徑畫圓.當(dāng)點p為位置時,四邊形PADC面積最大.當(dāng)點p為位置時,四邊形PADC最小=四邊形+三角形=.【點睛】本題主要考查了等腰三角形性質(zhì),直線,面積最值問題,數(shù)形結(jié)合思想是解題關(guān)鍵.20、(1)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些(3)初中代表隊選手成績較為穩(wěn)定【解析】解:(1)填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些.∵兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.(3)∵,,∴<,因此,初中代表隊選手成績較為穩(wěn)定.(1)根據(jù)成績表加以計算可補(bǔ)全統(tǒng)計表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.21、(1)見解析;(2)見解析;【解析】

(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,對角相等的性質(zhì),即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據(jù)對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.22、(1);(1);(3);【解析】

(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個徑賽項目和一個田賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學(xué)從5個項目中任

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論