江蘇省無錫市南長實驗教育集團2024年中考數(shù)學(xué)模擬試卷含解析_第1頁
江蘇省無錫市南長實驗教育集團2024年中考數(shù)學(xué)模擬試卷含解析_第2頁
江蘇省無錫市南長實驗教育集團2024年中考數(shù)學(xué)模擬試卷含解析_第3頁
江蘇省無錫市南長實驗教育集團2024年中考數(shù)學(xué)模擬試卷含解析_第4頁
江蘇省無錫市南長實驗教育集團2024年中考數(shù)學(xué)模擬試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省無錫市南長實驗教育集團2024年中考數(shù)學(xué)模擬精編試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.對于反比例函數(shù)y=﹣2xA.圖象分布在第二、四象限B.當(dāng)x>0時,y隨x的增大而增大C.圖象經(jīng)過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y22.據(jù)國土資源部數(shù)據(jù)顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當(dāng)量,將39000000000用科學(xué)記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1093.計算6m3÷(-3m2)的結(jié)果是()A.-3m B.-2m C.2m D.3m4.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.5.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側(cè)面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm6.下列各類數(shù)中,與數(shù)軸上的點存在一一對應(yīng)關(guān)系的是()A.有理數(shù)B.實數(shù)C.分?jǐn)?shù)D.整數(shù)7.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.18.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結(jié)論:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個9.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側(cè)面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm210.今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設(shè)他從山腳出發(fā)后所用的時間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是()A.小明中途休息用了20分鐘B.小明休息前爬山的平均速度為每分鐘70米C.小明在上述過程中所走的路程為6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知點E是菱形ABCD的AD邊上的一點,連接BE、CE,M、N分別是BE、CE的中點,連接MN,若∠A=60°,AB=4,則四邊形BCNM的面積為_____.12.函數(shù)y=中,自變量x的取值范圍是_________.13.如圖,已知一塊圓心角為270°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),圓錐底面圓的直徑是60cm,則這塊扇形鐵皮的半徑是_____cm.14.每年農(nóng)歷五月初五為端午節(jié),中國民間歷來有端午節(jié)吃粽子、賽龍舟的習(xí)俗.某班同學(xué)為了更好地了解某社區(qū)居民對鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛情況,對該社區(qū)居民進行了隨機抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).分析圖中信息,本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為________;若該社區(qū)有10000人,估計愛吃鮮肉粽的人數(shù)約為________.15.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.16.袋中裝有紅、綠各一個小球,隨機摸出1個小球后放回,再隨機摸出一個,則第一次摸到紅球,第二次摸到綠球的概率是_____.三、解答題(共8題,共72分)17.(8分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由;(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).18.(8分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.19.(8分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.(1)當(dāng)點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當(dāng)AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大??;(3)在點P運動中,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.20.(8分)先化簡,再求值:1+xx2-121.(8分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.22.(10分)計算:解方程:23.(12分)如圖,在平面直角坐標(biāo)系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標(biāo);(3)在拋物線上是否存在點E:它關(guān)于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標(biāo),如果不存在,試說明理由.24.如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結(jié)AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)反比例函數(shù)圖象的性質(zhì)對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當(dāng)x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.2、A【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】39000000000=3.9×1.故選A.【點睛】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).3、B【解析】

根據(jù)單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式計算,然后選取答案即可.【詳解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故選B.4、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.5、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.6、B【解析】

根據(jù)實數(shù)與數(shù)軸上的點存在一一對應(yīng)關(guān)系解答.【詳解】實數(shù)與數(shù)軸上的點存在一一對應(yīng)關(guān)系,故選:B.【點睛】本題考查了實數(shù)與數(shù)軸上點的關(guān)系,每一個實數(shù)都可以用數(shù)軸上唯一的點來表示,反過來,數(shù)軸上的每個點都表示一個唯一的實數(shù),也就是說實數(shù)與數(shù)軸上的點一一對應(yīng).7、A【解析】

連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.8、D【解析】①因為二次函數(shù)的對稱軸是直線x=﹣1,由圖象可得左交點的橫坐標(biāo)大于﹣3,小于﹣2,所以﹣=﹣1,可得b=2a,當(dāng)x=﹣3時,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①選項結(jié)論正確;②∵拋物線的對稱軸是直線x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此選項結(jié)論不正確;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0有實數(shù)根;④由圖象得:當(dāng)x>﹣1時,y隨x的增大而減小,∵當(dāng)k為常數(shù)時,0≤k2≤k2+1,∴當(dāng)x=k2的值大于x=k2+1的函數(shù)值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此選項結(jié)論不正確;所以正確結(jié)論的個數(shù)是1個,故選D.9、A【解析】

根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側(cè)面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側(cè)面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關(guān)計算,關(guān)鍵是利用圓錐的側(cè)面積=底面周長×母線長÷2得出.10、C【解析】

根據(jù)圖像,結(jié)合行程問題的數(shù)量關(guān)系逐項分析可得出答案.【詳解】從圖象來看,小明在第40分鐘時開始休息,第60分鐘時結(jié)束休息,故休息用了20分鐘,A正確;小明休息前爬山的平均速度為:(米/分),B正確;小明在上述過程中所走的路程為3800米,C錯誤;小明休息前爬山的平均速度為:70米/分,大于休息后爬山的平均速度:米/分,D正確.故選C.考點:函數(shù)的圖象、行程問題.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】

如圖,連接BD.首先證明△BCD是等邊三角形,推出S△EBC=S△DBC=×42=4,再證明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解決問題.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等邊三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S陰=4-=3,故答案為3.【點睛】本題考查相似三角形的判定和性質(zhì)、三角形的中位線定理、菱形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.12、x≤1且x≠﹣1【解析】

由二次根式中被開方數(shù)為非負(fù)數(shù)且分母不等于零求解可得結(jié)論.【詳解】根據(jù)題意,得:,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時,自變量可取全體實數(shù);(1)當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時,被開方數(shù)非負(fù).13、40cm【解析】

首先根據(jù)圓錐的底面直徑求得圓錐的底面周長,然后根據(jù)底面周長等于展開扇形的弧長求得鐵皮的半徑即可.【詳解】∵圓錐的底面直徑為60cm,∴圓錐的底面周長為60πcm,∴扇形的弧長為60πcm,設(shè)扇形的半徑為r,則=60π,解得:r=40cm,故答案為:40cm.【點睛】本題考查了圓錐的計算,解題的關(guān)鍵是首先求得圓錐的底面周長,利用圓錐的底面周長等于扇形的弧長求解.14、120人,3000人【解析】

根據(jù)B的人數(shù)除以占的百分比得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)減去A、B、D的人數(shù)得到本次抽樣調(diào)查中喜愛小棗粽的人數(shù);利用該社區(qū)的總?cè)藬?shù)×愛吃鮮肉粽的人數(shù)所占的百分比得出結(jié)果.【詳解】調(diào)查的總?cè)藬?shù)為:60÷10%=600(人),本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為:600﹣180﹣60﹣240=120(人);若該社區(qū)有10000人,估計愛吃鮮肉粽的人數(shù)約為:100003000(人).故答案為120人;3000人.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。部疾榱死脴颖竟烙嬁傮w.15、45或1【解析】

先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點睛】此題考查了圖形的剪拼,解題的關(guān)鍵是能夠根據(jù)題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.16、【解析】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為.三、解答題(共8題,共72分)17、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標(biāo)為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標(biāo)及對稱軸,可設(shè)出M點坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標(biāo)的方程,可求得M點的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標(biāo),表示出F點的坐標(biāo),表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當(dāng)MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當(dāng)MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時,△CBE的面積最大,此時E點坐標(biāo)為(,),即當(dāng)E點坐標(biāo)為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.18、(1)證明見解析;(2)1.【解析】

(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質(zhì)和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據(jù)等角對等邊得AB=AC;(2)設(shè)⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據(jù)勾股定理列等式,并根據(jù)AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設(shè)⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.【點睛】本題考查了圓的切線的性質(zhì),圓的切線垂直于經(jīng)過切點的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系;簡記作:見切點,連半徑,見垂直.19、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】

(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當(dāng)點Q運動到點E時,CQ最長為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設(shè)PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當(dāng)點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當(dāng)點Q直線BD上方,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當(dāng)點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當(dāng)點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當(dāng)點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質(zhì)以及三角形相似的相關(guān)知識,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.20、3+3【解析】

先化簡分式,再計算x的值,最后把x的值代入化簡后的分式,計算出結(jié)果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當(dāng)x=2cos30°+tan45°=2×32=3+1時.xx-1=【點睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關(guān)鍵是掌握分式的運算法則和運算順序.21、(1)BD=CD=5;(2)BD=5,BC=5.【解析】

(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質(zhì)以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據(jù)垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設(shè)垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【點睛】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,屬于中考??碱}型.22、(1)10;(2)原方程無解.【解析】

(1)原式利用二次根式性質(zhì),零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及特殊角的三角函數(shù)值計算即可求出值;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】(1)原式==10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,經(jīng)檢驗:x=2是增根,原方程無解.【點睛】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.23、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論