




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省無錫市重點達標名校2024年中考聯(lián)考數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是二次函數(shù)的圖象,有下面四個結(jié)論:;;;,其中正確的結(jié)論是
A. B. C. D.2.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.143.是兩個連續(xù)整數(shù),若,則分別是().A.2,3 B.3,2 C.3,4 D.6,84.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°5.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.6.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點7.下面的統(tǒng)計圖反映了我國最近十年間核電發(fā)電量的增長情況,根據(jù)統(tǒng)計圖提供的信息,下列判斷合理的是()A.2011年我國的核電發(fā)電量占總發(fā)電量的比值約為1.5%B.2006年我國的總發(fā)電量約為25000億千瓦時C.2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的2倍D.我國的核電發(fā)電量從2008年開始突破1000億千瓦時8.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.9.多項式ax2﹣4ax﹣12a因式分解正確的是()A.a(chǎn)(x﹣6)(x+2) B.a(chǎn)(x﹣3)(x+4) C.a(chǎn)(x2﹣4x﹣12) D.a(chǎn)(x+6)(x﹣2)10.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.11.在中,,,,則的值是()A. B. C. D.12.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知實數(shù)a、b、c滿足+|10﹣2c|=0,則代數(shù)式ab+bc的值為__.14.點A(-2,1)在第_______象限.15.如圖,AB是⊙O的直徑,點C在⊙O上,AE是⊙O的切線,A為切點,連接BC并延長交AE于點D.若AOC=80°,則ADB的度數(shù)為()A.40°B.50°C.60°D.20°16.不透明袋子中裝有5個紅色球和3個藍色球,這些球除了顏色外沒有其他差別.從袋子中隨機摸出一個球,摸出藍色球的概率為_______.17.一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點C1的坐標是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點D2018縱坐標是_____.18.二次函數(shù)y=ax2+bx+c(a、b、c是常數(shù),且a≠0)的圖象如圖所示,則a+b+2c__________0(填“>”“=”或“<”).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某初中學校舉行毛筆書法大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學中有來自七年級,有來自八年級,其他同學均來自九年級,現(xiàn)準備從獲得一等獎的同學中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學的概率.20.(6分)【發(fā)現(xiàn)證明】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.21.(6分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)22.(8分)如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))數(shù)軸上點B對應的數(shù)是______.經(jīng)過幾秒,點M、點N分別到原點O的距離相等?23.(8分)校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學數(shù)學活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側(cè)取點A、B,使∠CAD=30,∠CBD=60.求AB的長(精確到0.1米,參考數(shù)據(jù):);已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.24.(10分)如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點E、F、G、H運動過程中,判斷直線EG是否經(jīng)過某一個定點,如果是,請證明你的結(jié)論;如果不是,請說明理由25.(10分)已知:如圖,AB=AC,點D是BC的中點,AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.26.(12分)春節(jié)期間,收發(fā)微信紅包已經(jīng)成為各類人群進行交流聯(lián)系、增強感情的一部分,小王在2017年春節(jié)共收到紅包400元,2019年春節(jié)共收到紅包484元,求小王在這兩年春節(jié)收到紅包的年平均增長率.27.(12分)某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,注意用數(shù)形結(jié)合的思想解決問題。2、C【解析】
根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關(guān)鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.3、A【解析】
根據(jù),可得答案.【詳解】根據(jù)題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數(shù)的大小,明確是解題關(guān)鍵.4、C【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質(zhì),熟悉掌握性質(zhì)是關(guān)鍵.5、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質(zhì)得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.6、B【解析】
二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).7、B【解析】
由折線統(tǒng)計圖和條形統(tǒng)計圖對各選項逐一判斷即可得.【詳解】解:A、2011年我國的核電發(fā)電量占總發(fā)電量的比值大于1.5%、小于2%,此選項錯誤;B、2006年我國的總發(fā)電量約為500÷2.0%=25000億千瓦時,此選項正確;C、2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的顯然不到2倍,此選項錯誤;D、我國的核電發(fā)電量從2012年開始突破1000億千瓦時,此選項錯誤;故選:B.【點睛】本題考查的是條形統(tǒng)計圖和折線統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況.8、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.9、A【解析】試題分析:首先提取公因式a,進而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案為a(x﹣6)(x+2).點評:此題主要考查了提取公因式法以及十字相乘法分解因式,正確利用十字相乘法分解因式是解題關(guān)鍵.10、C【解析】
根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.11、D【解析】
首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.12、D【解析】
根據(jù)菱形的性質(zhì)得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1【解析】試題分析:根據(jù)非負數(shù)的性質(zhì)可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.14、二【解析】
根據(jù)點在第二象限的坐標特點解答即可.【詳解】∵點A的橫坐標-2<0,縱坐標1>0,∴點A在第二象限內(nèi).故答案為:二.【點睛】本題主要考查了平面直角坐標系中各個象限的點的坐標的符號特點:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15、B.【解析】試題分析:根據(jù)AE是⊙O的切線,A為切點,AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對的圓周角等于它所對的圓心角的一半,求出∠B,從而得到∠ADB的度數(shù).由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點:圓的基本性質(zhì)、切線的性質(zhì).16、【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值即其發(fā)生的概率.詳解:由于共有8個球,其中籃球有5個,則從袋子中摸出一個球,摸出藍球的概率是,故答案是.點睛:此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.17、×()2【解析】
利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.【詳解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的邊長=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的縱坐標為×()2,故答案為×()2.【點睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵18、<【解析】
由拋物線開口向下,則a<0,拋物線與y軸交于y軸負半軸,則c<0,對稱軸在y軸左側(cè),則b<0,因此可判斷a+b+2c與0的大小【詳解】∵拋物線開口向下∴a<0∵拋物線與y軸交于y軸負半軸,∴c<0∵對稱軸在y軸左側(cè)∴﹣<0∴b<0∴a+b+2c<0故答案為<.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,正確利用圖象得出正確信息是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2).【解析】【分析】(1)根據(jù)參與獎有10人,占比25%可求得獲獎的總?cè)藬?shù),用總?cè)藬?shù)減去二等獎、三等獎、鼓勵獎、參與獎的人數(shù)可求得一等獎的人數(shù),據(jù)此補全條形圖即可;(2)根據(jù)題意分別求出七年級、八年級、九年級獲得一等獎的人數(shù),然后通過列表或畫樹狀圖法進行求解即可得.【詳解】(1)10÷25%=40(人),獲一等獎人數(shù):40-8-6-12-10=4(人),補全條形圖如圖所示:(2)七年級獲一等獎人數(shù):4×=1(人),八年級獲一等獎人數(shù):4×=1(人),∴九年級獲一等獎人數(shù):4-1-1=2(人),七年級獲一等獎的同學用M表示,八年級獲一等獎的同學用N表示,九年級獲一等獎的同學用P1、P2表示,樹狀圖如下:共有12種等可能結(jié)果,其中獲得一等獎的既有七年級又有九年級人數(shù)的結(jié)果有4種,則所選出的兩人中既有七年級又有九年級同學的概率P=.【點評】此題考查了統(tǒng)計與概率綜合,理解扇形統(tǒng)計圖與條形統(tǒng)計圖的意義及列表法或樹狀圖法是解題關(guān)鍵.20、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關(guān)鍵全等三角形的性質(zhì)得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴將△ABE繞點A順時針旋轉(zhuǎn)90°得△ACG,連接FG,如圖2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF與△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“點睛”本題考查了全等三角形的性質(zhì)和判定,勾股定理,正方形的性質(zhì)的應用,正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵,此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.21、(1)60,20;(2)漁政船距海島A的距離AB約為24.49海里.【解析】
(1)利用題目總結(jié)的正弦定理,將有關(guān)數(shù)據(jù)代入求解即可;(2)在△ABC中,分別求得BC的長和三個內(nèi)角的度數(shù),利用題目中總結(jié)的正弦定理求AC的長即可.【詳解】(1)由正玄定理得:∠A=60°,AC=20;故答案為60°,20;(2)如圖:依題意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,,即,解得AB=10≈24.49(海里).答:漁政船距海島A的距離AB約為24.49海里.【點睛】本題考查了方向角的知識,更重要的是考查了同學們的閱讀理解能力,通過材料總結(jié)出學生們沒有接觸的知識,并根據(jù)此知識點解決相關(guān)的問題,是近幾年中考的高頻考點.22、(1)1;(2)經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等【解析】試題分析:(1)根據(jù)OB=3OA,結(jié)合點B的位置即可得出點B對應的數(shù);(2)設(shè)經(jīng)過x秒,點M、點N分別到原點O的距離相等,找出點M、N對應的數(shù),再分點M、點N在點O兩側(cè)和點M、點N重合兩種情況考慮,根據(jù)M、N的關(guān)系列出關(guān)于x的一元一次方程,解之即可得出結(jié)論.試題解析:(1)∵OB=3OA=1,
∴B對應的數(shù)是1.
(2)設(shè)經(jīng)過x秒,點M、點N分別到原點O的距離相等,
此時點M對應的數(shù)為3x-2,點N對應的數(shù)為2x.
①點M、點N在點O兩側(cè),則
2-3x=2x,
解得x=2;
②點M、點N重合,則,
3x-2=2x,
解得x=2.
所以經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等.23、(1)24.2米(2)超速,理由見解析【解析】
(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.24、(1)見解析;(2)直線EG經(jīng)過一個定點,這個定點為正方形的中心(AC、BD的交點);理由見解析.【解析】分析:(1)由正方形的性質(zhì)得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明△AEH≌△CGF即可求解;(2)連接AC、EG,交點為O;先證明△AOE≌△COG,得出OA=OC,證出O為對角線AC、BD的交點,即O為正方形的中心.詳解:(1)證明:∵四邊形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH與△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直線EG經(jīng)過一個定點,這個定點為正方形的中心(AC、BD的交點);理由如下:連接AC、EG,交點為O;如圖所示:∵四邊形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O為AC的中點,∵正方形的對角線互相平分,∴O為對角線AC、BD的交點,即O為正方形的中心.點睛:考查了正方形的性質(zhì)與判定、全等三角形的判定與性質(zhì)等知識;本題綜合性強,有一定難度,特別是(2)中,需要通過作輔助線證明三角形全等才能得出結(jié)果.25、見解析【解析】試題分析:證明簡單的線段相等,可證線段所在的三角形全等,結(jié)合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點D是BC的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際關(guān)系學院《工程力學與機械設(shè)計》2023-2024學年第二學期期末試卷
- 河北環(huán)境工程學院《護理學基礎(chǔ)技術(shù)(一)》2023-2024學年第二學期期末試卷
- 南京航空航天大學金城學院《細胞生物學課程設(shè)計》2023-2024學年第二學期期末試卷
- 廣州城市職業(yè)學院《戰(zhàn)略管理》2023-2024學年第二學期期末試卷
- 廣東新安職業(yè)技術(shù)學院《生物化學及實驗》2023-2024學年第二學期期末試卷
- 長春師范大學《汽車底盤構(gòu)造與維修》2023-2024學年第二學期期末試卷
- 山西華澳商貿(mào)職業(yè)學院《移動通信技術(shù)》2023-2024學年第二學期期末試卷
- 大學生畢業(yè)實習計劃
- 大一新生軍訓心得感悟(28篇)
- 農(nóng)村亂占耕地建房問題整治工作匯報范文(3篇)
- 小學體積單位換算練習100道及答案
- 第7課《誰是最可愛的人》公開課一等獎創(chuàng)新教學設(shè)計-2
- 人音版四年級音樂下冊全冊教學設(shè)計教案表格式
- 骨盆骨折小講課護理課件
- 渣土車司機安全培訓
- 分布式儲能系統(tǒng)的成本效益評估
- 二次函數(shù)(最全的中考二次函數(shù)知識點總結(jié))
- 建筑衛(wèi)生陶瓷生產(chǎn)英文資料
- 網(wǎng)絡(luò)意識形態(tài)安全
- 汽油安全技術(shù)說明書(MSDS)
- 人工智能的倫理問題及其治理研究
評論
0/150
提交評論