江蘇省鹽城市射陽(yáng)中學(xué)2024屆高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
江蘇省鹽城市射陽(yáng)中學(xué)2024屆高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
江蘇省鹽城市射陽(yáng)中學(xué)2024屆高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
江蘇省鹽城市射陽(yáng)中學(xué)2024屆高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
江蘇省鹽城市射陽(yáng)中學(xué)2024屆高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省鹽城市射陽(yáng)中學(xué)2024屆高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,那么所得圖象的一個(gè)對(duì)稱中心為()A. B. C. D.2.已知函數(shù),,若成立,則的最小值是()A. B. C. D.3.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.4.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.5.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]6.雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.7.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為()A. B.4 C.2 D.8.函數(shù)與的圖象上存在關(guān)于直線對(duì)稱的點(diǎn),則的取值范圍是()A. B. C. D.9.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.10.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測(cè)試(滿分100分)中得分情況的莖葉圖,則下列說(shuō)法錯(cuò)誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等11.已知拋物線上的點(diǎn)到其焦點(diǎn)的距離比點(diǎn)到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.12.設(shè),則(

)A.10 B.11 C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為_(kāi)__.14.從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)15.已知正數(shù)a,b滿足a+b=1,則的最小值等于__________,此時(shí)a=____________.16.函數(shù)的值域?yàn)開(kāi)________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個(gè)特征向量.18.(12分)已知點(diǎn)為圓:上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)作直線的垂線(當(dāng)、重合時(shí),直線約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程為,連接并延長(zhǎng)交于,求的最大值.19.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.20.(12分)2019年是五四運(yùn)動(dòng)100周年.五四運(yùn)動(dòng)以來(lái)的100年,是中國(guó)青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國(guó)、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來(lái)之際,學(xué)校組織“五四運(yùn)動(dòng)100周年”知識(shí)競(jìng)賽,競(jìng)賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對(duì)每道A類題的概率都是,答對(duì)每道B類題的概率都是,且各題答對(duì)與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.21.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為求a,b的值;證明:.22.(10分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個(gè)單位,可得的圖象,那么所得圖象的一個(gè)對(duì)稱中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).2、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問(wèn)題,通過(guò)構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問(wèn)題,另外通過(guò)二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).3、B【解析】

利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用.4、B【解析】

將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.5、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.6、D【解析】

根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)椋纯傻玫?,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問(wèn)題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.7、D【解析】

由復(fù)數(shù)的綜合運(yùn)算求出,再寫出其共軛復(fù)數(shù),然后由模的定義計(jì)算模.【詳解】,.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題.8、C【解析】

由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對(duì)分類討論,得出時(shí),取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí),取得極大值,也即為最大值,當(dāng)趨近于時(shí),趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.9、D【解析】

依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.10、B【解析】

由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對(duì)于甲,;對(duì)于乙,,故正確;甲的極差為,乙的極差為,故錯(cuò)誤;對(duì)于甲,方差.5,對(duì)于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計(jì)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.11、B【解析】

由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點(diǎn)M到其焦點(diǎn)F的距離比點(diǎn)M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.【點(diǎn)睛】本題考查了拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.12、B【解析】

根據(jù)題中給出的分段函數(shù),只要將問(wèn)題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意,根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【詳解】由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.【點(diǎn)睛】本題主要考查了利用數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解數(shù)列的通項(xiàng)公式,其中解答中熟記數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】

依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可。【詳解】“任取兩個(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是。【點(diǎn)睛】本題主要考查古典概型的概率求法。15、3【解析】

根據(jù)題意,分析可得,由基本不等式的性質(zhì)可得最小值,進(jìn)而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據(jù)題意,正數(shù)a、b滿足,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值為3,此時(shí).故答案為:3;.【點(diǎn)睛】本題考查基本不等式及其應(yīng)用,考查轉(zhuǎn)化與化歸能力,屬于基礎(chǔ)題.16、【解析】

利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當(dāng)時(shí),,當(dāng)時(shí),,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域?yàn)椋海军c(diǎn)睛】本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、特征值為1,特征向量為.【解析】

設(shè)出矩陣M結(jié)合矩陣運(yùn)算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個(gè)特征向量.【詳解】設(shè)矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個(gè)特征向量為.【點(diǎn)睛】本題主要考查矩陣的運(yùn)算及特征量的求解,矩陣運(yùn)算的關(guān)鍵是明確其運(yùn)算規(guī)則,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1);(2)【解析】

(1)設(shè)的極坐標(biāo)為,在中,有,即可得結(jié)果;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,聯(lián)立兩個(gè)方程,可求出,聯(lián)立可得,則計(jì)算可得,利用三角函數(shù)的性質(zhì)可得最值.【詳解】(1)設(shè)的極坐標(biāo)為,在中,有,點(diǎn)的軌跡的極坐標(biāo)方程為;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,由得:,由得:,,,當(dāng),即時(shí),,的最大值為.【點(diǎn)睛】本題考查極坐標(biāo)方程的應(yīng)用,考查三角函數(shù)性質(zhì)的應(yīng)用,是中檔題.19、(1)(2)【解析】

(1)不妨設(shè),,計(jì)算得到,根據(jù)面積得到,計(jì)算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達(dá)定理得到,,代入化簡(jiǎn)計(jì)算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點(diǎn)睛】本題考查了橢圓方程,定值問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2)分布列見(jiàn)解析,期望為.【解析】

(1)甲同學(xué)至少抽到2道B類題包含兩個(gè)事件:一個(gè)抽到2道B類題,一個(gè)是抽到3個(gè)B類題,計(jì)算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計(jì)算概率得分布列,再由期望公式計(jì)算期望.【詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點(diǎn)睛】本題考查古典概型,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算公式.21、(1);(2)見(jiàn)解析【解析】分析:第一問(wèn)結(jié)合導(dǎo)數(shù)的幾何意義以及切點(diǎn)在切線上也在函數(shù)圖像上,從而建立關(guān)于的等量關(guān)系式,從而求得結(jié)果;第二問(wèn)可以有兩種方法,一是將不等式轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,從而求得結(jié)果,二是利用中間量來(lái)完成,這樣利用不等式的傳遞性來(lái)完成,再者這種方法可以簡(jiǎn)化運(yùn)算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設(shè)則只需證明,設(shè)則,在上單調(diào)遞增,,使得且當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞減當(dāng)時(shí),,單調(diào)遞增,由,得,,設(shè),,當(dāng)時(shí),,在單調(diào)遞減,,因此(方法二)先證當(dāng)時(shí),,即證設(shè),則,且,在單調(diào)遞增,在單調(diào)遞增,則當(dāng)時(shí),(也可直接分析顯然成立)再證設(shè),則,令,得且當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,即又,點(diǎn)睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的綜合問(wèn)題,在求解的過(guò)程中,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,有關(guān)切線的問(wèn)題,還有就是應(yīng)用導(dǎo)數(shù)證明不等式,可以構(gòu)造新函數(shù),轉(zhuǎn)化為最值問(wèn)題來(lái)解決,也可以借用不等式的傳遞性,借助中間量來(lái)完成.22、(1)故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論