版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省廈門市二中2024年高三第二次診斷性檢測數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.2.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.3.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④4.已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是()A. B. C. D.5.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交6.已知復數(shù)在復平面內(nèi)對應的點的坐標為,則下列結(jié)論正確的是()A. B.復數(shù)的共軛復數(shù)是C. D.7.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個8.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.9.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.10.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.11.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.12.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在處的切線斜率為________.14.已知向量,且,則實數(shù)的值是__________.15.若x,y均為正數(shù),且,則的最小值為________.16.實數(shù),滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關關系,我們以“年份—2014”為橫坐標,“需求量”為縱坐標,請完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.18.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數(shù)的值域.19.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.20.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.21.(12分)已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.22.(10分)設函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.2、D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.3、D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.4、C【解析】分析:先求導,再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得.當a<1時,,所以函數(shù)f(x)在單調(diào)遞減,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當1≤a<e時,函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當1≤a<e時,滿足題意.當a時,函數(shù)f(x)在(0,1)單調(diào)遞增,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學問題的等價轉(zhuǎn)化,找到了問題的突破口.5、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.6、D【解析】
首先求得,然后根據(jù)復數(shù)乘法運算、共軛復數(shù)、復數(shù)的模、復數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數(shù),則,所以A選項不正確;復數(shù)的共軛復數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數(shù)的幾何意義,共軛復數(shù),復數(shù)的模,復數(shù)的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想.7、B【解析】
圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數(shù)學運算能力,難度一般.9、A【解析】
設出A,B的坐標,利用導數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據(jù)得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.10、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調(diào),故為的最大值,故選:B.【點睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.11、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.12、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結(jié)余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導后代入可構造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問題,考查導數(shù)的幾何意義,屬于基礎題.14、【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數(shù)乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.15、4【解析】
由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應用,考查學生對基本不等式的靈活使用,難度較易.16、10【解析】
畫出可行域,根據(jù)目標函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當經(jīng)過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標函數(shù)最大值的求法,基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)能夠滿足.【解析】
(1)根據(jù)表中數(shù)據(jù),結(jié)合以“年份—2014”為橫坐標,“需求量”為縱坐標的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預測2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對數(shù)據(jù)處理表格如下:年份—2014024需求量—25701929(2)由題意可知,變量與之間具有線性相關關系,由(1)中表格可得,,,,.由上述計算結(jié)果可知,所求回歸直線方程為,利用回歸直線方程,可預測2020年的糧食需求量為:(萬噸),因為,故能夠滿足該地區(qū)的糧食需求.【點睛】本題考查了線性回歸直線的求法及預測應用,屬于基礎題.18、(1);(2)【解析】
(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數(shù)值域的求解等知識.19、(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.20、(1);(2)存在,當時,以線段為直徑的圓恰好經(jīng)過坐標原點O.【解析】
(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設橢圓的焦半距為c,則由題設,得,解得,所以,故所求橢圓C的方程為(2)存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O.理由如下:設點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經(jīng)過坐標原點O,所以,即.又,于是,解得,經(jīng)檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經(jīng)過坐標原點O【點睛】本題考查橢圓方程的求法,橢圓的簡單性質(zhì),直線與橢圓位置關系的綜合應用,考查計算能力以及轉(zhuǎn)化思想的應用,屬于中檔題.21、(1)曲線的標準方程為.拋物線的標準方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點P的軌跡W是橢圓,寫出橢圓的標準方程,根據(jù)平面向量數(shù)量積運算和點A在拋物線上求出拋物線C的標準方程;(2)設出點P的坐標,再表示出點N和Q的坐標,根據(jù)題意求出的值,即可判斷結(jié)果是否成立.【詳解】(1)由題知,,所以,因此動點的軌跡是以,為焦點的橢圓,又知,,所以曲線的標準方程為.又由題知,所以,所以,又因為點在拋物線上,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國彈簧接線端子市場調(diào)查研究報告
- 2025至2031年中國二合一多功能按摩墊行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國刻錄機外殼數(shù)據(jù)監(jiān)測研究報告
- 二零二五版分公司獨立經(jīng)營協(xié)議及市場開發(fā)合同3篇
- 二零二五年度個人耐用消費品分期付款合同范本與信用記錄2篇
- 二零二五年度農(nóng)業(yè)機械設備銷售擔保金合同2篇
- 二零二五年度借唄個人消費貸款合同(家電購買分期付款版)3篇
- 二零二五個人房產(chǎn)測繪服務合同標準范本
- 二零二五版外派臨時工聘用外用人員技能培訓與績效考核合同2篇
- 數(shù)學說課稿小學8篇
- 血透病人體重健康宣教
- 大健康行業(yè)研究課件
- 租賃汽車可行性報告
- 計算機輔助設計AutoCAD繪圖-課程教案
- 老年護理學-老年人與人口老齡化-課件
- 文化墻、墻體彩繪施工方案
- 初中化學校本課程
- 科技文獻檢索
- GB/T 18665-2008地理標志產(chǎn)品蒙山茶
- 元代文學緒論
- QUALITY MANUAL質(zhì)量手冊(英文版)
評論
0/150
提交評論