山東省濟寧市市中區(qū)2024屆中考數(shù)學全真模擬試題含解析_第1頁
山東省濟寧市市中區(qū)2024屆中考數(shù)學全真模擬試題含解析_第2頁
山東省濟寧市市中區(qū)2024屆中考數(shù)學全真模擬試題含解析_第3頁
山東省濟寧市市中區(qū)2024屆中考數(shù)學全真模擬試題含解析_第4頁
山東省濟寧市市中區(qū)2024屆中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山東省濟寧市市中區(qū)2024屆中考數(shù)學全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(

)A.4 B.6 C.8 D.102.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件3.下列運算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a(chǎn)3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x64.下列分式中,最簡分式是()A. B. C. D.5.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數(shù)為()A.30° B.45° C.50° D.75°6.計算(1-)÷的結(jié)果是()A.x-1 B. C. D.7.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.8.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結(jié)論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結(jié)論的序號是()A.③④ B.②③ C.①④ D.①②③9.某機構(gòu)調(diào)查顯示,深圳市20萬初中生中,沉迷于手機上網(wǎng)的初中生約有16000人,則這部分沉迷于手機上網(wǎng)的初中生數(shù)量,用科學記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人10.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.12.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.13.計算:___.14.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.15.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.16.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.三、解答題(共8題,共72分)17.(8分)在一個不透明的盒子中,裝有3個分別寫有數(shù)字1,2,3的小球,他們的形狀、大小、質(zhì)地完全相同,攪拌均勻后,先從盒子里隨機抽取1個小球,記下小球上的數(shù)字后放回盒子,攪拌均勻后再隨機取出1個小球,再記下小球上的數(shù)字.(1)用列表法或樹狀圖法寫出所有可能出現(xiàn)的結(jié)果;(2)求兩次取出的小球上的數(shù)字之和為奇數(shù)的概率P.18.(8分)在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學生中,男生所占的百分比是多少?若該校七年級學生共有500人,請估計其中參加“書法”項目活動的有多少人?學校教務處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?19.(8分)解不等式組,并將解集在數(shù)軸上表示出來.20.(8分)反比例函數(shù)在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為2.求反比例函數(shù)的解析式;設點B的坐標為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.21.(8分)列方程解應用題:某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?22.(10分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當a=6時,求圖案中陰影部分正六邊形的面積.23.(12分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)24.如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+1.求拋物線的表達式;在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小?!逴D⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關鍵是利用三角形中位線定理進行求解.2、B【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的實際;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、D【解析】

根據(jù)同底數(shù)冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,逐項判定即可.【詳解】∵(a3)2=a6,∴選項A不符合題意;∵(-x)2÷x=x,∴選項B不符合題意;∵a3(-a)2=a5,∴選項C不符合題意;∵(-2x2)3=-8x6,∴選項D符合題意.故選D.【點睛】此題主要考查了同底數(shù)冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,要熟練掌握.4、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.5、B【解析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.6、B【解析】

先計算括號內(nèi)分式的加法、將除式分子因式分解,再將除法轉(zhuǎn)化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點睛】本題主要考查分式的混合運算,解題的關鍵是掌握分式混合運算順序和運算法則.7、C【解析】

根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負,偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負,偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉(zhuǎn)化為一般規(guī)律是解決本題的關鍵.8、C【解析】試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.解:①當x=1時,y=a+b+c=1,故本選項錯誤;②當x=﹣1時,圖象與x軸交點負半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項正確;③由拋物線的開口向下知a<1,∵對稱軸為1>x=﹣>1,∴2a+b<1,故本選項正確;④對稱軸為x=﹣>1,∴a、b異號,即b>1,∴abc<1,故本選項錯誤;∴正確結(jié)論的序號為②③.故選B.點評:二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對稱軸和a的符號確定:由對稱軸公式x=﹣b2a判斷符號;(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>1;否則c<1;(4)當x=1時,可以確定y=a+b+C的值;當x=﹣1時,可以確定y=a﹣b+c的值.9、A【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】用科學記數(shù)法表示16000,應記作1.6×104,故選A.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、D【解析】

根據(jù)銳角三角函數(shù)的定義可得結(jié)論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質(zhì)即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點睛】此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應用、射影定理等幾何知識點為核心構(gòu)造而成;對綜合的分析問題解決問題的能力提出了一定的要求.12、2【解析】∵∠ACB=90°,F(xiàn)D⊥AB,∴∠ACB=∠FDB=90°。∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。13、【解析】

直接利用負指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】原式.故答案為.【點睛】本題考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵.14、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。15、【解析】

在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質(zhì)利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.16、48°【解析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.三、解答題(共8題,共72分)17、(1見解析;(2).【解析】

(1)根據(jù)題意先畫出樹狀圖,得出所有可能出現(xiàn)的結(jié)果數(shù);

(2)根據(jù)(1)可得共有9種情況,兩次取出小球上的數(shù)字和為奇數(shù)的情況,再根據(jù)概率公式即可得出答案.【詳解】(1)列表得,(2)兩次取出的小球上的數(shù)字之和為奇數(shù)的共有4種,∴P兩次取出的小球上數(shù)字之和為奇數(shù)的概率P=.【點睛】此題可以采用列表法或者采用樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.樹狀圖法適用于兩步或兩步以上完成的事件.解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)詳見解析;(2)40%;(3)105;(4).【解析】

(1)先求出參加活動的女生人數(shù),進而求出參加武術(shù)的女生人數(shù),即可補全條形統(tǒng)計圖,再分別求出參加武術(shù)的人數(shù)和參加器樂的人數(shù),即可求出百分比;(2)用參加剪紙中男生人數(shù)除以剪紙的總?cè)藬?shù)即可得出結(jié)論;(3)根據(jù)樣本估計總體的方法計算即可;(4)利用概率公式即可得出結(jié)論.【詳解】(1)由條形圖知,男生共有:10+20+13+9=52人,∴女生人數(shù)為100-52=48人,∴參加武術(shù)的女生為48-15-8-15=10人,∴參加武術(shù)的人數(shù)為20+10=30人,∴30÷100=30%,參加器樂的人數(shù)為9+15=24人,∴24÷100=24%,補全條形統(tǒng)計圖和扇形統(tǒng)計圖如圖所示:(2)在參加“剪紙”活動項目的學生中,男生所占的百分比是100%=40%.答:在參加“剪紙”活動項目的學生中,男生所占的百分比為40%.(3)500×21%=105(人).答:估計其中參加“書法”項目活動的有105人.(4).答:正好抽到參加“器樂”活動項目的女生的概率為.【點睛】此題主要考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?9、原不等式組的解集為﹣4<x≤1,在數(shù)軸上表示見解析.【解析】分析:根據(jù)解一元一次不等式組的步驟,大小小大中間找,可得答案詳解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在數(shù)軸上表示如圖,原不等式組的解集為﹣4<x≤1.點睛:本題考查了解一元一次不等式組,利用不等式組的解集的表示方法是解題關鍵.20、(2)(2)7或2.【解析】試題分析:(2)根據(jù)反比例函數(shù)k的幾何意義得到|k|=2,可得到滿足條件的k=6,于是得到反比例函數(shù)解析式為y=;(2)分類討論:當以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,再利用反比例函數(shù)圖象上點的坐標特征確定M點坐標為(2,6),則AB=AM=6,所以t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,根據(jù)正方形的性質(zhì)得AB=BC=t-2,則C點坐標為(t,t-2),然后利用反比例函數(shù)圖象上點的坐標特征得到t(t-2)=6,再解方程得到滿足條件的t的值.試題解析:(2)∵△AOM的面積為2,∴|k|=2,而k>0,∴k=6,∴反比例函數(shù)解析式為y=;(2)當以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,把x=2代入y=得y=6,∴M點坐標為(2,6),∴AB=AM=6,∴t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,則AB=BC=t-2,∴C點坐標為(t,t-2),∴t(t-2)=6,整理為t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB為一邊的正方形有一個頂點在反比例函數(shù)y=的圖象上時,t的值為7或2.考點:反比例函數(shù)綜合題.21、從2015年到2017年,該地投入異地安置資金的年平均增長率為50%.【解析】

設年平均增長率為x,根據(jù):2016年投入資金×(1+增長率)2=2018年投入資金,列出方程求解可得.【詳解】解:設該地投入異地安置資金的年平均增長率為x.根據(jù)題意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:從2016年到2018年,該地投入異地安置資金的年平均增長率為50%.【點睛】本題考查了一元二次方程的應用,由題意準確找出相等關系并據(jù)此列出方程是解題的關鍵.22、(1)如圖所示見解析,(2)當半徑為6時,該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點,如圖所示,連接所得六等分點,作出兩個等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.23、(39+9)米.【解析】

過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據(jù)CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【點睛】本題考查解直角三角形的應用-仰角俯角問題;坡度坡角問題,掌握概念正確

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論