四川省樂山第七中學(xué)重點(diǎn)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
四川省樂山第七中學(xué)重點(diǎn)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
四川省樂山第七中學(xué)重點(diǎn)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
四川省樂山第七中學(xué)重點(diǎn)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
四川省樂山第七中學(xué)重點(diǎn)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省樂山第七中學(xué)重點(diǎn)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.二次函數(shù)(a、b、c是常數(shù),且a≠0)的圖象如圖所示,下列結(jié)論錯誤的是()A.4ac<b2 B.a(chǎn)bc<0 C.b+c>3a D.a(chǎn)<b2.某種超薄氣球表面的厚度約為,這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A. B. C. D.3.要使分式有意義,則x的取值應(yīng)滿足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣24.下列四個(gè)圖形分別是四屆國際數(shù)學(xué)家大會的會標(biāo),其中屬于中心對稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.甲、乙、丙、丁四名射擊運(yùn)動員進(jìn)行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績?nèi)鐖D所示,丙、丁二人的成績?nèi)绫硭荆蕴幻\(yùn)動員,從平均數(shù)和方差兩個(gè)因素分析,應(yīng)淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁6.若點(diǎn)A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.7.如圖,BC⊥AE于點(diǎn)C,CD∥AB,∠B=55°,則∠1等于()A.35° B.45° C.55° D.25°8.根據(jù)《九章算術(shù)》的記載中國人最早使用負(fù)數(shù),下列負(fù)數(shù)中最大的是()A.-1 B.-12 C.-9.不等式組的解集表示在數(shù)軸上正確的是()A. B. C. D.10.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.11.的倒數(shù)是()A. B.3 C. D.12.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖所示,點(diǎn)C在反比例函數(shù)的圖象上,過點(diǎn)C的直線與x軸、y軸分別交于點(diǎn)A、B,且,已知的面積為1,則k的值為______.14.如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E是線段BO上的一個(gè)動點(diǎn),點(diǎn)F為射線DC上一點(diǎn),若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.15.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點(diǎn)A按順時(shí)針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上時(shí),則CD的長為_____.16.如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長為_____.17.已知雙曲線經(jīng)過點(diǎn)(-1,2),那么k的值等于_______.18.不等式組的所有整數(shù)解的積為__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:(1)該公司“高級技工”有名;(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;(3)小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個(gè)數(shù)據(jù)向小張介紹員工的月工資實(shí)際水平更合理些;(4)去掉四個(gè)管理人員的工資后,請你計(jì)算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實(shí)際水平.20.(6分)(1)計(jì)算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F,求∠F的度數(shù).21.(6分)貨車行駛25與轎車行駛35所用時(shí)間相同.已知轎車每小時(shí)比貨車多行駛20,求貨車行駛的速度.22.(8分)已知如圖,直線y=﹣x+4與x軸相交于點(diǎn)A,與直線y=x相交于點(diǎn)P.(1)求點(diǎn)P的坐標(biāo);(2)動點(diǎn)E從原點(diǎn)O出發(fā),沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動t秒時(shí),F(xiàn)的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數(shù)關(guān)系式(3)若點(diǎn)M在直線OP上,在平面內(nèi)是否存在一點(diǎn)Q,使以A,P,M,Q為頂點(diǎn)的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點(diǎn)坐標(biāo)。若不存在請說明理由。23.(8分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點(diǎn)P,M是AB邊的中點(diǎn),連接PM、PB,設(shè)A、P兩點(diǎn)間的距離為xcm,PM+PB長度為ycm.小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.(3)結(jié)合畫出的函數(shù)圖象,解決問題:PM+PB的長度最小值約為______cm.24.(10分)某校對學(xué)生就“食品安全知識”進(jìn)行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計(jì)圖中的值,并補(bǔ)全條形統(tǒng)計(jì)圖。(2)該校共有學(xué)生900人,估計(jì)該校學(xué)生對“食品安全知識”非常了解的人數(shù).25.(10分)如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當(dāng)AE為何值時(shí),△AEF的面積最大?26.(12分)解不等式組27.(12分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點(diǎn),C,D是該雙曲線另一支上兩點(diǎn),且A、B、C、D四點(diǎn)按順時(shí)針順序排列.(1)如圖,若m=﹣,n=,點(diǎn)B的縱坐標(biāo)為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標(biāo)為(1,5),①求m,n的值;②點(diǎn)P(a,b)是雙曲線y=第一象限上一動點(diǎn),當(dāng)S△APC≥24時(shí),則a的取值范圍是.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可求出答案.【詳解】由圖象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正確;∵拋物線開口向上,∴a<0,∵拋物線與y軸的負(fù)半軸,∴c<0,∵拋物線對稱軸為x=<0,∴b<0,∴abc<0,故B正確;∵當(dāng)x=1時(shí),y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正確;∵當(dāng)x=﹣1時(shí),y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D錯誤;故選D.考點(diǎn):本題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程、不等式之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.2、A【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】,故選:A.【點(diǎn)睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.3、D【解析】試題分析:∵分式有意義,∴x+1≠0,∴x≠﹣1,即x的取值應(yīng)滿足:x≠﹣1.故選D.考點(diǎn):分式有意義的條件.4、B【解析】

解:根據(jù)中心對稱的概念可得第一個(gè)圖形是中心對稱圖形,第二個(gè)圖形不是中心對稱圖形,第三個(gè)圖形是中心對稱圖形,第四個(gè)圖形不是中心對稱圖形,所以,中心對稱圖有2個(gè).故選B.【點(diǎn)睛】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關(guān)鍵.5、D【解析】

求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個(gè)人的平均數(shù)相同,方差丁最大.故應(yīng)該淘汰?。蔬xD.【點(diǎn)睛】本題考查方差、平均數(shù)、折線圖等知識,解題的關(guān)鍵是記住平均數(shù)、方差的公式.6、D【解析】

將,代入,得,,然后分析與的正負(fù),即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點(diǎn)睛】本題考查了反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征,一次函數(shù)的圖像與性質(zhì),得出與的正負(fù)是解答本題的關(guān)鍵.7、A【解析】

根據(jù)垂直的定義得到∠∠BCE=90°,根據(jù)平行線的性質(zhì)求出∠BCD=55°,計(jì)算即可.【詳解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故選:A.【點(diǎn)睛】本題考查的是平行線的性質(zhì)和垂直的定義,兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.8、B【解析】

根據(jù)兩個(gè)負(fù)數(shù),絕對值大的反而小比較.【詳解】解:∵?12>?1>?2∴負(fù)數(shù)中最大的是?12故選:B.【點(diǎn)睛】本題考查了實(shí)數(shù)大小的比較,解題的關(guān)鍵是知道正數(shù)大于0,0大于負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對值大的反而?。?、C【解析】

根據(jù)題意先解出的解集是,把此解集表示在數(shù)軸上要注意表示時(shí)要注意起始標(biāo)記為空心圓圈,方向向右;表示時(shí)要注意方向向左,起始的標(biāo)記為實(shí)心圓點(diǎn),綜上所述C的表示符合這些條件.故應(yīng)選C.10、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線上,設(shè)圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設(shè)圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點(diǎn):垂徑定理的應(yīng)用.11、A【解析】

解:的倒數(shù)是.故選A.【點(diǎn)睛】本題考查倒數(shù),掌握概念正確計(jì)算是解題關(guān)鍵.12、B【解析】

根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進(jìn)行判斷直線y=kx-k不經(jīng)過的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.【點(diǎn)睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

根據(jù)題意可以設(shè)出點(diǎn)A的坐標(biāo),從而以得到點(diǎn)C和點(diǎn)B的坐標(biāo),再根據(jù)的面積為1,即可求得k的值.【詳解】解:設(shè)點(diǎn)A的坐標(biāo)為,過點(diǎn)C的直線與x軸,y軸分別交于點(diǎn)A,B,且,的面積為1,點(diǎn),點(diǎn)B的坐標(biāo)為,,解得,,故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當(dāng)點(diǎn)E和點(diǎn)B重合時(shí),∠FBD=90°,∠BDC=30°,則EF=1;當(dāng)點(diǎn)E和點(diǎn)O重合時(shí),∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點(diǎn)睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個(gè)問題的關(guān)鍵就是找出當(dāng)點(diǎn)E在何處時(shí)取到最大值和最小值,從而得出答案.15、1.1.【解析】分析:由將△ABC繞點(diǎn)A按順時(shí)針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉(zhuǎn)的性質(zhì)可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點(diǎn)睛:此題考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.16、4或4.【解析】

①當(dāng)AF<AD時(shí),由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質(zhì)得到MH=AE=2,根據(jù)勾股定理得到A′H=,根據(jù)勾股定理列方程即可得到結(jié)論;②當(dāng)AF>AD時(shí),由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據(jù)矩形的性質(zhì)得到DH=AG,HG=AD=6,根據(jù)勾股定理即可得到結(jié)論.【詳解】①當(dāng)AF<AD時(shí),如圖1,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設(shè)MN是BC的垂直平分線,則AM=AD=3,過E作EH⊥MN于H,則四邊形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵M(jìn)F2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②當(dāng)AF>AD時(shí),如圖2,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設(shè)MN是BC的垂直平分線,過A′作HG∥BC交AB于G,交CD于H,則四邊形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,綜上所述,折痕EF的長為4或4,故答案為:4或4.【點(diǎn)睛】本題考查了翻折變換-折疊問題,矩形的性質(zhì)和判定,勾股定理,正確的作出輔助線是解題的關(guān)鍵.17、-1【解析】

分析:根據(jù)點(diǎn)在曲線上點(diǎn)的坐標(biāo)滿足方程的關(guān)系,將點(diǎn)(-1,2)代入,得:,解得:k=-1.18、1【解析】

解:,解不等式①得:,解不等式②得:,∴不等式組的整數(shù)解為﹣1,1,1…51,所以所有整數(shù)解的積為1,故答案為1.【點(diǎn)睛】本題考查一元一次不等式組的整數(shù)解,準(zhǔn)確計(jì)算是關(guān)鍵,難度不大.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實(shí)際水平.【解析】

(1)用總?cè)藬?shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實(shí)際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實(shí)際水平.【詳解】(1)該公司“高級技工”的人數(shù)=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數(shù)從小到大排列,第25和第26分別是:1600元和1800元,因而中位數(shù)是1700元;在這些數(shù)中1600元出現(xiàn)的次數(shù)最多,因而眾數(shù)是1600元;(3)這個(gè)經(jīng)理的介紹不能反映該公司員工的月工資實(shí)際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實(shí)際水平.20、(1)﹣1+3;(2)30°.【解析】

(1)根據(jù)零指數(shù)冪、絕對值、二次根式的性質(zhì)求出每一部分的值,代入求出即可;(2)根據(jù)平行線的性質(zhì)可得∠EDC=∠B=,根據(jù)三角形內(nèi)角和定理即可求解;【詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點(diǎn)D,E分別是邊BC,AC的中點(diǎn),∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【點(diǎn)睛】(1)主要考查零指數(shù)冪、絕對值、二次根式的性質(zhì);(2)考查平行線的性質(zhì)和三角形內(nèi)角和定理.21、50千米/小時(shí).【解析】

根據(jù)題中等量關(guān)系:貨車行駛25千米與小車行駛35千米所用時(shí)間相同,列出方程求解即可.【詳解】解:設(shè)貨車的速度為x千米/小時(shí),依題意得:解:根據(jù)題意,得

解得:x=50經(jīng)檢驗(yàn)x=50是原方程的解.答:貨車的速度為50千米/小時(shí).【點(diǎn)睛】本題考查了分式方程的應(yīng)用,找出題中的等量關(guān)系,列出關(guān)系式是解題的關(guān)鍵.22、(1);(2);(3)【解析】

(1)聯(lián)立兩直線解析式,求出交點(diǎn)P坐標(biāo)即可;(2)由F坐標(biāo)確定出OF的長,得到E的橫坐標(biāo)為a,代入直線OP解析式表示出E縱坐標(biāo),即為EF的長,分兩種情況考慮:當(dāng)時(shí),矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數(shù)關(guān)系式;當(dāng)時(shí),重合部分為直角梯形面積,求出S與a函數(shù)關(guān)系式.(3)根據(jù)(1)所求,先求得A點(diǎn)坐標(biāo),再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯(lián)立得:,解得:;∴P的坐標(biāo)為;(2)分兩種情況考慮:當(dāng)時(shí),由F坐標(biāo)為(a,0),得到OF=a,把E橫坐標(biāo)為a,代入得:即此時(shí)當(dāng)時(shí),重合的面積就是梯形面積,F(xiàn)點(diǎn)的橫坐標(biāo)為a,所以E點(diǎn)縱坐標(biāo)為M點(diǎn)橫坐標(biāo)為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標(biāo)為(4,0)則AP=,則PM=2又∵OP=∴點(diǎn)P向左平移3個(gè)單位在向下平移可以得到M1點(diǎn)P向右平移3個(gè)單位在向上平移可以得到M2∴A向左平移3個(gè)單位在向下平移可以得到Q1(1,-)A向右平移3個(gè)單位在向上平移可以得到Q1(7,)所以,存在Q點(diǎn),且坐標(biāo)是【點(diǎn)睛】本題考查一次函數(shù)綜合題、勾股定理以及逆定理、矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.23、(1)2.1;(2)見解析;(3)x=2時(shí),函數(shù)有最小值y=4.2【解析】

(1)通過作輔助線,應(yīng)用三角函數(shù)可求得HM+HN的值即為x=2時(shí),y的值;(2)可在網(wǎng)格圖中直接畫出函數(shù)圖象;(3)由函數(shù)圖象可知函數(shù)的最小值.【詳解】(1)當(dāng)點(diǎn)P運(yùn)動到點(diǎn)H時(shí),AH=3,作HN⊥AB于點(diǎn)N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點(diǎn)P,M是AB邊的中點(diǎn),∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據(jù)函數(shù)圖象可知,當(dāng)x=2時(shí),函數(shù)有最小值y=4.2.故答案為:4.2.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.24、(1),補(bǔ)全條形統(tǒng)計(jì)圖見解析;(2)該校學(xué)生對“食品安全知識”非常了解的人數(shù)為135人?!窘馕觥吭囶}分析:(1)由統(tǒng)計(jì)圖中的信息可知,B組學(xué)生有32人,占總數(shù)的40%,由此可得被抽查學(xué)生總?cè)藬?shù)為:32÷40%=80(人),結(jié)合C組學(xué)生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補(bǔ)全條形統(tǒng)計(jì)圖了;(2)由(1)中計(jì)算可知,A組有12名學(xué)生,占總數(shù)的12÷80×100%=15%,結(jié)合全???cè)藬?shù)為900可得900×15%=135(人),即全校“非常了解”“食品安全知識”的有135人.試題解析:(1)由已知條件可得:被抽查學(xué)生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計(jì)圖補(bǔ)充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學(xué)生對“食品安全知識”非常了解的人數(shù)為135人.25、(1)證明見解析;(2)AE=2時(shí),△AEF的面積最大.【解析】

(1)根據(jù)正方形的性質(zhì),可得EF=CE,再根據(jù)∠CEF=∠90°,進(jìn)而可得∠FEH=∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論