陜西省西安臨潼區(qū)驪山初級中學2024屆中考數學四模試卷含解析_第1頁
陜西省西安臨潼區(qū)驪山初級中學2024屆中考數學四模試卷含解析_第2頁
陜西省西安臨潼區(qū)驪山初級中學2024屆中考數學四模試卷含解析_第3頁
陜西省西安臨潼區(qū)驪山初級中學2024屆中考數學四模試卷含解析_第4頁
陜西省西安臨潼區(qū)驪山初級中學2024屆中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安臨潼區(qū)驪山初級中學2024屆中考數學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:12.已知反比例函數,下列結論不正確的是()A.圖象經過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>23.數軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D4.如圖,在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,AB=10,BC=8,DE=4.5,則△DEF的周長是()A.9.5 B.13.5 C.14.5 D.175.“綠水青山就是金山銀山”.某工程隊承接了60萬平方米的荒山綠化任務,為了迎接雨季的到來,實際工作時每天的工作效率比原計劃提高了25%,結果提前30天完成了這一任務.設實際工作時每天綠化的面積為x萬平方米,則下面所列方程中正確的是()A. B.C. D.6.若函數與y=﹣2x﹣4的圖象的交點坐標為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.27.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.88.二次函數的對稱軸是A.直線 B.直線 C.y軸 D.x軸9.在平面直角坐標系xOy中,四條拋物線如圖所示,其解析式中的二次項系數一定小于1的是()A.y1 B.y2 C.y3 D.y410.化簡的結果是()A. B. C. D.11.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.12.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.14.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應,若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.15.從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片(大小、形狀完全相同)中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.16.已知|x|=3,y2=16,xy<0,則x﹣y=_____.17.如圖,點、、在直線上,點,,在直線上,以它們?yōu)轫旤c依次構造第一個正方形,第二個正方形,若的橫坐標是1,則的坐標是______,第n個正方形的面積是______.18.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側)連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.20.(6分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.21.(6分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?22.(8分)小新家、小華家和書店依次在東風大街同一側(忽略三者與東風大街的距離).小新小華兩人同時各自從家出發(fā)沿東風大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數圖象如圖所示,根據圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數圖象(2)求小新路過小華家后,y1與x之間的函數關系式.(3)直接寫出兩人離小華家的距離相等時x的值.23.(8分)已知點E是矩形ABCD的邊CD上一點,BF⊥AE于點F,求證△ABF∽△EAD.24.(10分)為了了解某校學生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學生進行調查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據調查結果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據圖中所提供的信息,完成下列問題:本次調查的學生人數為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學生,估計該校最喜愛《中國詩詞大會》的學生有多少名?25.(10分)某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.按約定,“小李同學在該天早餐得到兩個油餅”是事件;(可能,必然,不可能)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.26.(12分)(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.27.(12分)如圖,一次函數y=kx+b的圖象與反比例函數y=mx(1)求一次函數,反比例函數的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質.2、D【解析】

A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;

B選項:因為-2<0,圖象在第二、四象限,故本選項正確;

C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;

D選項:當x>0時,y<0,故本選項錯誤.

故選D.3、A【解析】

根據絕對值的含義和求法,判斷出絕對值等于2的數是﹣2和2,據此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關鍵要明確:①互為相反數的兩個數絕對值相等;②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.③有理數的絕對值都是非負數.4、B【解析】

由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.5、C【解析】分析:設實際工作時每天綠化的面積為x萬平方米,根據工作時間=工作總量÷工作效率結合提前30天完成任務,即可得出關于x的分式方程.詳解:設實際工作時每天綠化的面積為x萬平方米,則原來每天綠化的面積為萬平方米,依題意得:,即.故選C.點睛:考查了由實際問題抽象出分式方程.找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.6、B【解析】

求出兩函數組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點坐標是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點睛】本題考查了一次函數與反比例函數的交點問題和解方程組等知識點,關鍵是求出a、b的值.7、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考??碱}型.8、C【解析】

根據頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,找出h即可得出答案.【詳解】解:二次函數y=x2的對稱軸為y軸.

故選:C.【點睛】本題考查二次函數的性質,解題關鍵是頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,頂點坐標為(h,k).9、A【解析】

由圖象的點的坐標,根據待定系數法求得解析式即可判定.【詳解】由圖象可知:拋物線y1的頂點為(-2,-2),與y軸的交點為(0,1),根據待定系數法求得y1=(x+2)2-2;拋物線y2的頂點為(0,-1),與x軸的一個交點為(1,0),根據待定系數法求得y2=x2-1;拋物線y3的頂點為(1,1),與y軸的交點為(0,2),根據待定系數法求得y3=(x-1)2+1;拋物線y4的頂點為(1,-3),與y軸的交點為(0,-1),根據待定系數法求得y4=2(x-1)2-3;綜上,解析式中的二次項系數一定小于1的是y1故選A.【點睛】本題考查了二次函數的圖象,二次函數的性質以及待定系數法求二次函數的解析式,根據點的坐標求得解析式是解題的關鍵.10、D【解析】

將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.11、B【解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.12、B【解析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、7【解析】設樹的高度為m,由相似可得,解得,所以樹的高度為7m14、或5或1.【解析】

根據以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當在△ADE中,DE=5,當AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質,注意分類討論的完整性.15、1【解析】

根據概率的公式進行計算即可.【詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【點睛】考查概率的計算,明確概率的意義是解題的關鍵,概率等于所求情況數與總情況數的比.16、±3【解析】分析:本題是絕對值、平方根和有理數減法的綜合試題,同時本題還滲透了分類討論的數學思想.詳解:因為|x|=1,所以x=±1.因為y2=16,所以y=±2.又因為xy<0,所以x、y異號,當x=1時,y=-2,所以x-y=3;當x=-1時,y=2,所以x-y=-3.故答案為:±3.點睛:本題是一道綜合試題,本題中有分類的數學思想,求解時要注意分類討論.17、(4,2),【解析】

由的橫坐標是1,可得,利用兩個函數解析式求出點、的坐標,得出的長度以及第1個正方形的面積,求出的坐標;然后再求出的坐標,得出第2個正方形的面積,求出的坐標;再求出、的坐標,得出第3個正方形的面積;從而得出規(guī)律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標是1,

,

點,,在直線上,

,,

,,

第1個正方形的面積為:;

,

,,,

第2個正方形的面積為:;

,

,,

第3個正方形的面積為:;

,

第n個正方形的面積為:.

故答案為,.【點睛】本題考查了一次函數圖象上點的坐標特征,正方形的性質以及規(guī)律型中圖形的變化規(guī)律,解題的關鍵是找出規(guī)律本題難度適中,解決該題型題目時,根據給定的條件求出第1、2、3個正方形的邊長,根據數據的變化找出變化規(guī)律是關鍵.18、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)+;(3)的值不變,.【解析】

(1)根據等腰三角形的性質得到∠ABC=45°,∠ACB=90°,根據圓周角定理得到∠APB=90°,得到∠APC=∠D,根據平行線的判定定理證明;(2)作BH⊥CP,根據正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據相似三角形的性質解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點睛】本題考查的是圓周角定理、相似三角形的判定和性質以及銳角三角函數的概念,掌握圓周角定理、相似三角形的判定定理和性質定理是解題的關鍵.20、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質和勾股定理得出OD和AO的長,即根據菱形的性質得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線的性質,菱形的判定,相似三角形的判定與性質等,綜合性比較強.21、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】

(1)根據正方形的性質,可得EF=CE,再根據∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數表示△AEF的面積,再利用函數的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質、矩形性質以及全等三角形的判斷和性質和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.22、(1)60;960;圖見解析;(2)y1=60x﹣240(4≤x≤20);(3)兩人離小華家的距離相等時,x的值為2.4或12.【解析】

(1)先根據小新到小華家的時間和距離即可求得小新的速度和小華家離書店的距離,然后根據小華的速度即可畫出y2與x的函數圖象;(2)設所求函數關系式為y1=kx+b,由圖可知函數圖像過點(4,0),(20,960),則將兩點坐標代入求解即可得到函數關系式;(3)分小新還沒到小華家和小新過了小華家兩種情況,然后分別求出x的值即可.【詳解】(1)由圖可知,小新離小華家240米,用4分鐘到達,則速度為240÷4=60米/分,小新按此速度再走16分鐘到達書店,則a=16×60=960米,小華到書店的時間為960÷40=24分鐘,則y2與x的函數圖象為:故小新的速度為60米/分,a=960;(2)當4≤x≤20時,設所求函數關系式為y1=kx+b(k≠0),將點(4,0),(20,960)代入得:,解得:,∴y1=60x﹣240(4≤x≤20時)(3)由圖可知,小新到小華家之前的函數關系式為:y=240﹣6x,①當兩人分別在小華家兩側時,若兩人到小華家距離相同,則240﹣6x=40x,解得:x=2.4;②當小新經過小華家并追上小華時,兩人到小華家距離相同,則60x﹣240=40x,解得:x=12;故兩人離小華家的距離相等時,x的值為2.4或12.23、證明見解析【解析】試題分析:先利用等角的余角相等得到根據有兩組角對應相等,即可證明兩三角形相似.試題解析:∵四邊形為矩形,于點F,點睛:兩組角對應相等,兩三角形相似.24、(1)120;(2)

;(3)答案見解析;(4)1650.【解析】

(1)依據節(jié)目B的數據,即可得到調查的學生人數;(2)依據A部分的百分比,即可得到A部分所占圓心角的度數;(3)求得C部分的人數,即可將條形統(tǒng)計圖補充完整;(4)依據喜愛《中國詩詞大會》的學生所占的百分比,即可得到該校最喜愛《中國詩詞大會》的學生數量.【詳解】,故答案為120;,故答案為;:,如圖所示:,答:該校最喜愛中國詩詞大會的學生有1650名.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合思想解答.25、(1)不可能事件;(2).【解析】

試題分析:(1)根據隨機事件的概念即可得“小李同學在該天早餐得到兩個油餅”是不可能事件;(2)根據題意畫出樹狀圖,再由概率公式求解即可.試題解析:(1)小李同學在該天早餐得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論