版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年安徽省蚌埠市固鎮(zhèn)縣第三中學中考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里2.已知x=2是關(guān)于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.23.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.34.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.5.如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數(shù)為()A.30° B.36° C.54° D.72°6.如圖,A、B、C、D四個點均在⊙O上,∠AOD=50°,AO∥DC,則∠B的度數(shù)為()A.50°B.55°C.60°D.65°7.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2898.實數(shù)a、b在數(shù)軸上的對應點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<09.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD10.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,平行于x軸的直線AC分別交拋物線(x≥0)與(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=_.12.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為____cm.13.圓錐的底面半徑為2,母線長為6,則它的側(cè)面積為_____.14.某文化商場同時賣出兩臺電子琴,每臺均賣960元,以成本計算,其中一臺盈利20%,另一臺虧本20%,則本次出售中商場是_____(請寫出盈利或虧損)_____元.15.如圖,△ABC的兩條高AD,BE相交于點F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.16.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.三、解答題(共8題,共72分)17.(8分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個定點,若是,請確定該定點的位置,若不是,請說明理由.18.(8分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.19.(8分)某中學開學初到商場購買A、B兩種品牌的足球,購買A種品牌的足球20個,B種品牌的足球30個,共花費4600元,已知購買4個B種品牌的足球與購買5個A種品牌的足球費用相同.(1)求購買一個A種品牌、一個B種品牌的足球各需多少元.(2)學校為了響應“足球進校園”的號召,決定再次購進A、B兩種品牌足球共42個,正好趕上商場對商品價格進行調(diào)整,A品牌足球售價比第一次購買時提高5元,B品牌足球按第一次購買時售價的9折出售,如果學校此次購買A、B兩種品牌足球的總費用不超過第一次花費的80%,且保證這次購買的B種品牌足球不少于20個,則這次學校有哪幾種購買方案?(3)請你求出學校在第二次購買活動中最多需要多少資金?20.(8分)吳京同學根據(jù)學習函數(shù)的經(jīng)驗,對一個新函數(shù)y=的圖象和性質(zhì)進行了如下探究,請幫他把探究過程補充完整該函數(shù)的自變量x的取值范圍是.列表:x…﹣2﹣10123456…y…m﹣1﹣5n﹣1…表中m=,n=.描點、連線在下面的格點圖中,建立適當?shù)钠矫嬷苯亲鴺讼祒Oy中,描出上表中各對對應值為坐標的點(其中x為橫坐標,y為縱坐標),并根據(jù)描出的點畫出該函數(shù)的圖象:觀察所畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):①;②.21.(8分)某手機經(jīng)銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600元求甲、乙型號手機每部進價為多少元?該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺,請問有幾種進貨方案?請寫出進貨方案售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1280元.為了促銷,公司決定每售出一臺乙型號手機,返還顧客現(xiàn)金m元,而甲型號手機售價不變,要使(2)中所有方案獲利相同,求m的值22.(10分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.23.(12分)如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).求二次函數(shù)的解析式;求函數(shù)圖象的頂點坐標及D點的坐標;二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最?。咳鬋點存在,求出C點的坐標;若C點不存在,請說明理由.24.某高中進行“選科走班”教學改革,語文、數(shù)學、英語三門為必修學科,另外還需從物理、化學、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學科中任選三門,現(xiàn)對該校某班選科情況進行調(diào)查,對調(diào)查結(jié)果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,完成下列問題:該班共有學生人;請將條形統(tǒng)計圖補充完整;該班某同學物理成績特別優(yōu)異,已經(jīng)從選修學科中選定物理,還需從余下選修學科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學恰好選中化學、歷史兩科的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),
則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關(guān)鍵.2、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.3、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.4、C【解析】
左視圖就是從物體的左邊往右邊看.小正方形應該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應該是大正方形,故D錯誤,所以C正確.故此題選C.5、B【解析】
在等腰三角形△ABE中,求出∠A的度數(shù)即可解決問題.【詳解】解:在正五邊形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故選B.【點睛】本題主要考查多邊形內(nèi)角與外角的知識點,解答本題的關(guān)鍵是求出正五邊形的內(nèi)角,此題基礎(chǔ)題,比較簡單.6、D【解析】試題分析:連接OC,根據(jù)平行可得:∠ODC=∠AOD=50°,則∠DOC=80°,則∠AOC=130°,根據(jù)同弧所對的圓周角等于圓心角度數(shù)的一半可得:∠B=130°÷2=65°.考點:圓的基本性質(zhì)7、D【解析】
分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側(cè)時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點睛】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應用,小心別漏解.8、C【解析】
直接利用a,b在數(shù)軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數(shù)軸上看出,a在原點左側(cè),b在原點右側(cè),∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數(shù)軸和有理數(shù)的四則運算,解題的關(guān)鍵是掌握利用數(shù)軸表示有理數(shù)的大小.9、B【解析】
由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
B、∵BE=DF,
四邊形BFDE是等腰梯形,
本選項不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF.
故選B.【點睛】本題考查了平行四邊形的判定與性質(zhì),注意根據(jù)題意證得四邊形BFDE是平行四邊形是關(guān)鍵.10、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關(guān)系式即可.【詳解】解:設(shè)CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關(guān)系,重點是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.二、填空題(本大題共6個小題,每小題3分,共18分)11、5-【解析】試題分析:本題我們可以假設(shè)一個點的坐標,然后進行求解.設(shè)點C的坐標為(1,),則點B的坐標為(,),點D的坐標為(1,1),點E的坐標為(,1),則AB=,DE=-1,則=5-.考點:二次函數(shù)的性質(zhì)12、【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構(gòu)成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經(jīng)過的路線為圓心角為60°且半徑為10cm的圓弧.∴的長=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經(jīng)過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.13、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.解:根據(jù)圓錐的側(cè)面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.14、虧損1【解析】
設(shè)盈利20%的電子琴的成本為x元,設(shè)虧本20%的電子琴的成本為y元,再根據(jù)(1+利潤率)×成本=售價列出方程,解方程計算出x、y的值,進而可得答案.【詳解】設(shè)盈利20%的電子琴的成本為x元,
x(1+20%)=960,
解得x=10;
設(shè)虧本20%的電子琴的成本為y元,
y(1-20%)=960,
解得y=1200;
∴960×2-(10+1200)=-1,
∴虧損1元,
故答案是:虧損;1.【點睛】考查了一元一次方程組的應用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,設(shè)出未知數(shù),列出方程.15、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.16、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.三、解答題(共8題,共72分)17、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【解析】
(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設(shè)MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當a=b時,a+b最小,據(jù)此求解可得;(4)設(shè)該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過定點D,此頂點D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設(shè)MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動點,∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)知,a+b不存在最大值,當a=b時,a+b最小,由a=b得a=,解之得a=(負值舍去),此時b=,此時a+b的最小值為2;(4)如圖,設(shè)該圓與AC的交點為D,連接DM、DN,∵MN為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【點睛】本題考查的是圓的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應用、反比例函數(shù)的性質(zhì)等知識點.18、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】
(1)當x=0時的y值即為A、B兩點之間的距離,由圖可知當=2時,甲追上了乙,則可知(甲速度-乙速度)×時間=A、B兩點之間的距離;(2)由題意求解E、F兩點坐標,再用待定系數(shù)法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離;(5)分0-2分鐘、2-3分鐘和4-7分鐘三段考慮.【詳解】解:(1)由圖象可知,A、B兩點之間的距離是70米,甲機器人前2分鐘的速度為:(70+60×2)÷2=95米/分;(2)設(shè)線段EF所在直線的函數(shù)解析式為:y=kx+b,∵1×(95﹣60)=35,∴點F的坐標為(3,35),則2k+b=03k+b=35,解得k=35∴線段EF所在直線的函數(shù)解析式為y=35x﹣70;(3)∵線段FG∥x軸,∴甲、乙兩機器人的速度都是60米/分;(4)A、C兩點之間的距離為70+60×7=490米;(5)設(shè)前2分鐘,兩機器人出發(fā)x分鐘相距21米,由題意得,60x+70﹣95x=21,解得,x=1.2,前2分鐘﹣3分鐘,兩機器人相距21米時,由題意得,35x﹣70=21,解得,x=2.1.4分鐘﹣7分鐘,直線GH經(jīng)過點(4,35)和點(7,0),設(shè)線段GH所在直線的函數(shù)解析式為:y=kx+b,則,4k+b=357k+b=0,解得k=-則直線GH的方程為y=-353x+當y=21時,解得x=4.6,答:兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【點睛】本題考查了一次函數(shù)的應用,讀懂圖像是解題關(guān)鍵..19、(1)購買一個A種品牌的足球需要50元,購買一個B種品牌的足球需要80元;(2)有三種方案,具體見解析;(3)3150元.【解析】試題分析:(1)、設(shè)A種品牌足球的單價為x元,B種品牌足球的單價為y元,根據(jù)題意列出二元一次方程組,從而求出x和y的值得出答案;(2)、設(shè)第二次購買A種足球m個,則購買B種足球(50-m)個,根據(jù)題意列出不等式組求出m的取值范圍,從而得出答案;(3)、分別求出第二次購買時足球的單件,然后得出答案.試題解析:(1)設(shè)A種品牌足球的單價為x元,B種品牌足球的單價為y元,解得(2)設(shè)第二次購買A種足球m個,則購買B種足球(50-m)個,解得25≤m≤27∵m為整數(shù)∴m=25、26、27(3)∵第二次購買足球時,A種足球單價為50+4=54(元),B種足球單價為80×0.9=72∴當購買B種足球越多時,費用越高此時25×54+25×72=3150(元)20、(1)一切實數(shù)(2)-,-(3)見解析(4)該函數(shù)有最小值沒有最大值;該函數(shù)圖象關(guān)于直線x=2對稱【解析】
(1)分式的分母不等于零;(2)把自變量的值代入即可求解;(3)根據(jù)題意描點、連線即可;(4)觀察圖象即可得出該函數(shù)的其他性質(zhì).【詳解】(1)由y=知,x2﹣4x+5≠0,所以變量x的取值范圍是一切實數(shù).故答案為:一切實數(shù);(2)m=,n=,故答案為:-,-;(3)建立適當?shù)闹苯亲鴺讼担椟c畫出圖形,如下圖所示:(4)觀察所畫出的函數(shù)圖象,有如下性質(zhì):①該函數(shù)有最小值沒有最大值;②該函數(shù)圖象關(guān)于直線x=2對稱.故答案為:該函數(shù)有最小值沒有最大值;該函數(shù)圖象關(guān)于直線x=2對稱【點睛】本題綜合考查了二次函數(shù)的圖象和性質(zhì),根據(jù)圖表畫出函數(shù)的圖象是解題的關(guān)鍵.21、(1)甲種型號手機每部進價為1000元,乙種型號手機每部進價為800元;(2)共有四種方案;(3)當m=80時,w始終等于8000,取值與a無關(guān)【解析】
(1)設(shè)甲種型號手機每部進價為x元,乙種型號手機每部進價為y元根據(jù)題意列方程組求出x、y的值即可;(2)設(shè)購進甲種型號手機a部,這購進乙種型號手機(20-a)部,根據(jù)題意列不等式組求出a的取值范圍,根據(jù)a為整數(shù)求出a的值即可明確方案(3)利用利潤=單個利潤數(shù)量,用a表示出利潤W,當利潤與a無關(guān)時,(2)中的方案利潤相同,求出m值即可;【詳解】(1)設(shè)甲種型號手機每部進價為x元,乙種型號手機每部進價為y元,,解得,(2)設(shè)購進甲種型號手機a部,這購進乙種型號手機(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a為自然數(shù),∴有a為7、8、9、10共四種方案,(3)甲種型號手機每部利潤為1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,當m=80時,w始終等于8000,取值與a無關(guān).【點睛】本題考查了列二元一次方程組解實際問題的運用,根據(jù)題意找出等量關(guān)系列出方程是解題關(guān)鍵.22、(1)見解析(2)見解析【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【點睛】本題考查了平行四邊形的性質(zhì),利用了平行四邊形的性質(zhì),矩形的判定,等腰三角形的判定與性質(zhì),利用等腰三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高速公路ETC系統(tǒng)升級改造合同
- 2025年度智能物流平臺合作返點合同范本4篇
- 2025年度現(xiàn)代農(nóng)業(yè)設(shè)施承攬合同補充協(xié)議4篇
- 2025年度油氣儲罐安全檢測與改造合同4篇
- 2025年10kv線路施工綠色環(huán)保與節(jié)能減排合同3篇
- 2025年度智能車位租賃合同轉(zhuǎn)讓協(xié)議書(全新版)4篇
- 2024年車輛購銷合同示范文本
- 2025年度智能儲煤場租賃管理服務合同4篇
- 2024礦用設(shè)備租賃合同
- 2025年度城市更新改造項目承包合同簽約與歷史文化保護協(xié)議(2024版)3篇
- 2024年??谑羞x調(diào)生考試(行政職業(yè)能力測驗)綜合能力測試題及答案1套
- 六年級數(shù)學質(zhì)量分析及改進措施
- 一年級下冊數(shù)學口算題卡打印
- 2024年中科院心理咨詢師新教材各單元考試題庫大全-下(多選題部分)
- 真人cs基于信號發(fā)射的激光武器設(shè)計
- 【閱讀提升】部編版語文五年級下冊第三單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 四年級上冊遞等式計算練習200題及答案
- 法院后勤部門述職報告
- 2024年國信證券招聘筆試參考題庫附帶答案詳解
- 道醫(yī)館可行性報告
- 視網(wǎng)膜中央靜脈阻塞護理查房課件
評論
0/150
提交評論