2023-2024學年福建省閩侯二中五校教學聯(lián)合體高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2023-2024學年福建省閩侯二中五校教學聯(lián)合體高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2023-2024學年福建省閩侯二中五校教學聯(lián)合體高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2023-2024學年福建省閩侯二中五校教學聯(lián)合體高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2023-2024學年福建省閩侯二中五校教學聯(lián)合體高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省閩侯二中五校教學聯(lián)合體高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,則方程有實數(shù)根的概率為()A. B. C. D.2.的內(nèi)角的對邊分別為,面積為,若,則外接圓的半徑為()A. B. C. D.3.用數(shù)學歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a44.趙爽是三國時期吳國的數(shù)學家,他創(chuàng)制了一幅“勾股圓方圖”,也稱“趙爽弦圖”,如圖,若在大正方形內(nèi)隨機取-點,這一點落在小正方形內(nèi)的概率為,則勾與股的比為()A. B. C. D.5.在等比數(shù)列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.86.從A,B,C三個同學中選2名代表,則A被選中的概率為()A. B. C. D.7.一個幾何體的三視圖如圖所示,則這個幾何的體積為()立方單位.A. B.C. D.8.已知,,三點,則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.等腰直角三角形9.在三棱柱中,平面,,,,E,F(xiàn)分別是,上的點,則三棱錐的體積為()A.6 B.12 C.24 D.3610.函數(shù)的部分圖象如圖所示,函數(shù),則下列結論正確的是()A.B.函數(shù)與的圖象均關于直線對稱C.函數(shù)與的圖象均關于點對稱D.函數(shù)與在區(qū)間上均單調(diào)遞增二、填空題:本大題共6小題,每小題5分,共30分。11.我國高鐵發(fā)展迅速,技術先進.經(jīng)統(tǒng)計,在經(jīng)停某站的高鐵列車中,有10個車次的正點率為0.97,有20個車次的正點率為0.98,有10個車次的正點率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點率的估計值為___________.12.函數(shù)的圖象在點處的切線方程是,則__________.13.已知等差數(shù)列中,其前項和為,且,,當取最大值時,的值等于_____.14.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側面積為________.15.已知,,且,若恒成立,則實數(shù)的取值范圍是____.16.數(shù)列是等比數(shù)列,,,則的值是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當時,,求的值;(2)令,若對任意都有恒成立,求的最大值.18.已知向量,,,設函數(shù).(1)求的最小正周期;(2)求在上的最大值和最小值.19.設的內(nèi)角的對邊分別為,且滿足.(1)試判斷的形狀,并說明理由;(2)若,試求面積的最大值.20.在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;(2)設直線與圓交于不同的兩點、,且,求圓的方程;(3)設直線與(2)中所求圓交于點、,為直線上的動點,直線、與圓的另一個交點分別為、,求證:直線過定點.21.已知函數(shù),(1)求的單調(diào)遞增區(qū)間.(2)求在區(qū)間的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】方程有實數(shù)根,則:,即:,則:,如圖所示,由幾何概型計算公式可得,滿足題意的概率值為:.本題選擇B選項.2、A【解析】

出現(xiàn)面積,可轉(zhuǎn)化為觀察,和余弦定理很相似,但是有差別,差別就是條件是形式,而余弦定理中是形式,但是我們可以注意到:,所以可以完成本題.【詳解】由,所以在三角形中,再由正弦定理所以答案選擇A.【點睛】本題很靈活,在常數(shù)4的處理問題上有點巧妙,然后再借助余弦定理及正弦定理,難度較大.3、C【解析】

在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【詳解】解:用數(shù)學歸納法證明,

在驗證時,把當代入,左端.

故選:C.【點睛】此題主要考查數(shù)學歸納法證明等式的問題,屬于概念性問題.4、B【解析】

分別求解出小正方形和大正方形的面積,可知面積比為,從而構造方程可求得結果.【詳解】由圖形可知,小正方形邊長為小正方形面積為:,又大正方形面積為:,即:解得:本題正確選項:【點睛】本題考查幾何概型中的面積型的應用,關鍵是能夠利用概率構造出關于所求量的方程.5、A【解析】,選A.6、D【解析】

先求出基本事件總數(shù),被選中包含的基本事件個數(shù),由此能求出被選中的概率.【詳解】從,,三個同學中選2名代表,基本事件總數(shù)為:,共個,被選中包含的基本事件為:,共2個,被選中的概率.故選:D.【點睛】本題考查概率的求法,考查列舉法和運算求解能力,是基礎題.7、D【解析】由三視圖可知幾何體是由一個四棱錐和半個圓柱組合而成的,所以所求的體積為,故選D.8、D【解析】

計算三角形三邊長度,通過邊關系進行判斷.【詳解】由兩點之間的距離公式可得:,,,因為,且故該三角形為等腰直角三角形.故選:D.【點睛】本題考查兩點之間的距離公式,屬基礎題.9、B【解析】

等體積法:.求出的面積和F到平面的距離,代入公式即可.【詳解】由題意可得,的面積為,因為,,平面ABC,所以點C到平面的距離為,即點F到平面的距離為4,則三棱錐的體積為.故三棱錐的體積為12.【點睛】此題考察了三棱錐體積的等體積法,通過變化頂點和底面進行轉(zhuǎn)化,屬于較易題目.10、D【解析】

由三角函數(shù)圖像可得,,再結合三角函數(shù)圖像的性質(zhì)逐一判斷即可得解.【詳解】解:由函數(shù)的部分圖象可得,,即,則,又函數(shù)圖像過點,則,即,又,即,即,則對于選項A,顯然錯誤;對于選項B,函數(shù)的圖像關于直線對稱,即B錯誤;對于選項C,函數(shù)的圖像關于點對稱,即C錯誤;對于選項D,函數(shù)的增區(qū)間為,函數(shù)的增區(qū)間為,又,,即D正確,故選:D.【點睛】本題考查了利用三角函數(shù)圖像求函數(shù)解析式,重點考查了三角函數(shù)圖像的性質(zhì),屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.98.【解析】

本題考查通過統(tǒng)計數(shù)據(jù)進行概率的估計,采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點數(shù)約為,其中高鐵個數(shù)為11+21+11=41,所以該站所有高鐵平均正點率約為.【點睛】本題考點為概率統(tǒng)計,滲透了數(shù)據(jù)處理和數(shù)學運算素養(yǎng).側重統(tǒng)計數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計數(shù)據(jù),估算出正點列車數(shù)量與列車總數(shù)的比值.12、【解析】由導數(shù)的幾何意義可知,又,所以.13、或【解析】

設等差數(shù)列的公差為,由可得出與的等量關系,然后求出的表達式,解不等式,即可得出使得取得最大值的正整數(shù)的值.【詳解】設等差數(shù)列的公差為,由,可得,可得,,令,即,,解得.因此,當或時,取得最大值.故答案為:或.【點睛】本題考查等差數(shù)列前項和的最大值的求解,可利用二次函數(shù)的基本性質(zhì)來求,也可以轉(zhuǎn)化為等差數(shù)列所有的非負項之和的問題求解,考查化歸與轉(zhuǎn)化思想,屬于中等題.14、【解析】

圓柱的側面打開是一個矩形,長為底面的周長,寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因為圓柱的底面圓的半徑為2,所以圓柱的底面圓的周長為,則該圓柱的側面積為.【點睛】此題考察圓柱側面積公式,屬于基礎題目.15、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值16、【解析】

由題得計算得解.【詳解】由題得,所以.因為等比數(shù)列同號,所以.故答案為:【點睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項的應用,意在考查學生對這些知識的理解掌握水平.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)得,得或,結合取值范圍求解;(2)結合換元法處理二次不等式恒成立求參數(shù)的取值范圍.【詳解】(1),即,即有,所以或,即或由于,,所以;(2),令,對任意都有恒成立,即對恒成立,只需,解得:,所以的最大值為.【點睛】此題考查根據(jù)三角函數(shù)值相等求自變量取值的關系,利用換元法轉(zhuǎn)化為二次函數(shù)處理不等式問題,根據(jù)不等式恒成立求參數(shù)的取值范圍,涉及根的分布的問題.18、(1)(2)時,取最小值;時,取最大值1.【解析】

試題分析:(1)根據(jù)向量數(shù)量積、二倍角公式及配角公式得,再根據(jù)正弦函數(shù)性質(zhì)得.(2)先根據(jù)得,,再根據(jù)正弦函數(shù)性質(zhì)得最大值和最小值.試題解析:(1),最小正周期為.(2)當時,,由圖象可知時單調(diào)遞增,時單調(diào)遞減,所以當,即時,取最小值;當,即時,取最大值1.19、(1);(2).【解析】試題分析:(1)由,利用正、余弦定理,得,化簡整理即可證明:為直角三角形;(2)利用,,根據(jù)基本不等式可得:,即可求出面積的最大值.試題解析:解法1:(1)∵,由正、余弦定理,得,化簡整理得:,∵,所以,故為直角三角形,且;(2)∵,∴,當且僅當時,上式等號成立,∴.故,即面積的最大值為.解法2(1)由已知:,又∵,,∴,而,∴,∴,故,∴為直角三角形.(2)由(1),∴.∵,∴,∴,令,∵,∴,∴.而在上單調(diào)遞增,∴.20、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)由題意設圓心坐標為,可得半徑為,求出圓的方程,分別令、,可得出點、的坐標,利用三角形的面積公式即可證明出結論成立;(2)由,知,利用兩直線垂直的等價條件:斜率之積為,解方程可得,討論的取值,求得圓心到直線的距離,即可得到所求圓的方程;(3)設,、,求得、的坐標,以及直線、的方程,聯(lián)立圓的方程,利用韋達定理,結合,得出,設直線的方程為,代入圓的方程,利用韋達定理,可得、之間的關系,即可得出所求的定點.【詳解】(1)由題意可設圓心為,則圓的半徑為,則圓的方程為,即.令,得,得;令,得,得.(定值);(2)由,知,所以,解得.當時,圓心到直線的距離小于半徑,符合題意;當時,圓心到直線的距離大于半徑,不符合題意.所以,所求圓的方程為;(3)設,,,又知,,所以,.因為,所以.將,代入上式,整理得.①設直線的方程為,代入,整理得.所以,.代入①式,并整理得,即,解得或.當時,直線的方程為,過定點;當時,直線的方程為,過定點檢驗定點和、共線,不合題意,舍去.故過定點.【點睛】本題考查圓的方程的求法和運用,注意運用聯(lián)立直線方程和圓的方程,消去一個未知數(shù),運用韋達定理,考查直線恒過定點的求法,考查運算能力,屬于難題.21、(1),;(2)最大值為,最小值為【解析】

利用二倍角公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論