版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省廣州市增城區(qū)鄭中均中學(xué)數(shù)學(xué)高一下期末調(diào)研試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,則().A. B. C. D.2.若是兩條不同的直線,是三個(gè)不同的平面,則下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則3.若不等式的解集為空集,則實(shí)數(shù)a的取值范圍是()A. B. C. D.4.已知為等差數(shù)列,其前項(xiàng)和為,若,,則公差等于()A. B. C. D.5.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,21,….該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)都是1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和,人們把這樣的一列數(shù)組成的數(shù)列稱為“斐波那契數(shù)列”,則().A.1 B.2019 C. D.6.某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)獎(jiǎng)金投入,若該公司年全年投入研發(fā)獎(jiǎng)金萬(wàn)元,在此基礎(chǔ)上,每年投入的研發(fā)獎(jiǎng)金比上一年增長(zhǎng),則該公司全年投入的研發(fā)獎(jiǎng)金開始超過(guò)萬(wàn)元的年份是()(參考數(shù)據(jù):,,)A.年 B.年 C.年 D.年7.若滿足,且的最小值為,則實(shí)數(shù)的值為()A. B. C. D.8.下列命題中不正確的是()A.平面∥平面,一條直線平行于平面,則一定平行于平面B.平面∥平面,則內(nèi)的任意一條直線都平行于平面C.一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行D.分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線9.向正方形ABCD內(nèi)任投一點(diǎn)P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.10.已知隨機(jī)變量服從正態(tài)分布,且,,則()A.0.2 B.0.3 C.0.7 D.0.8二、填空題:本大題共6小題,每小題5分,共30分。11.把一枚質(zhì)地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.12.已知,且,則_____.13.若銳角滿足則______.14.在平面直角坐標(biāo)系中,在軸、軸正方向上的投影分別是、,則與同向的單位向量是__________.15.已知中,,且,則面積的最大值為__________.16.P是棱長(zhǎng)為4的正方體的棱的中點(diǎn),沿正方體表面從點(diǎn)A到點(diǎn)P的最短路程是_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,在中,為邊上一點(diǎn),,若.(1)若是銳角三角形,,求角的大??;(2)若銳角三角形,求的取值范圍.18.(1)解方程:;(2)有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,且第一個(gè)數(shù)與第四個(gè)數(shù)的和是16,第二個(gè)數(shù)與第三個(gè)數(shù)的和是12,求這四個(gè)數(shù);19.已知定義域?yàn)榈暮瘮?shù)在上有最大值1,設(shè).(1)求的值;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;(3)若函數(shù)有三個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).20.已知直線截圓所得的弦長(zhǎng)為.直線的方程為.(1)求圓的方程;(2)若直線過(guò)定點(diǎn),點(diǎn)在圓上,且,為線段的中點(diǎn),求點(diǎn)的軌跡方程.21.設(shè)數(shù)列的前項(xiàng)和為,若,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若的,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
.所以選A.【點(diǎn)睛】本題考查了二倍角及同角正余弦的差與積的關(guān)系,屬于基礎(chǔ)題.2、C【解析】
試題分析:兩個(gè)平面垂直,一個(gè)平面內(nèi)的直線不一定垂直于另一個(gè)平面,所以A不正確;兩個(gè)相交平面內(nèi)的直線也可以平行,所以B不正確;垂直于同一個(gè)平面的兩個(gè)平面不一定垂直,也可能平行或相交,所以D不正確;根據(jù)面面垂直的判定定理知C正確.考點(diǎn):空間直線、平面間的位置關(guān)系.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、D【解析】
對(duì)分兩種情況討論分析得解.【詳解】當(dāng)時(shí),不等式為,所以滿足題意;當(dāng)時(shí),,綜合得.故選:D【點(diǎn)睛】本題主要考查不等式的恒成立問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.4、C【解析】
由題意可得,又,所以,故選C.【點(diǎn)睛】本題考查兩個(gè)常見變形公式和.5、A【解析】
計(jì)算部分?jǐn)?shù)值,歸納得到,計(jì)算得到答案.【詳解】;;;…歸納總結(jié):故故選:【點(diǎn)睛】本題考查了數(shù)列的歸納推理,意在考查學(xué)生的推理能力.6、B【解析】試題分析:設(shè)從2015年開始第年該公司全年投入的研發(fā)資金開始超過(guò)200萬(wàn)元,由已知得,兩邊取常用對(duì)數(shù)得,故從2019年開始,該公司全年投入的研發(fā)資金開始超過(guò)200萬(wàn)元,故選B.【考點(diǎn)】增長(zhǎng)率問(wèn)題,常用對(duì)數(shù)的應(yīng)用【名師點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用.在實(shí)際問(wèn)題中平均增長(zhǎng)率問(wèn)題可以看作等比數(shù)列的應(yīng)用,解題時(shí)要注意把哪個(gè)數(shù)作為數(shù)列的首項(xiàng),然后根據(jù)等比數(shù)列的通項(xiàng)公式寫出通項(xiàng),列出不等式或方程就可求解.7、B【解析】
首先畫出滿足條件的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)取最小值找出最優(yōu)解,把最優(yōu)解點(diǎn)代入目標(biāo)函數(shù)即可求出的值.【詳解】畫出滿足條件的平面區(qū)域,如圖所示:,由,解得:,由得:,顯然直線過(guò)時(shí),z最小,∴,解得:,故選B.【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃,已知目標(biāo)函數(shù)最值求參數(shù)的問(wèn)題,屬于常考題型.8、A【解析】
逐一考查所給的選項(xiàng)是否正確即可.【詳解】逐一考查所給的選項(xiàng):A.平面∥平面,一條直線平行于平面,可能a在平面內(nèi)或與相交,不一定平行于平面,題中說(shuō)法錯(cuò)誤;B.由面面平行的定義可知:若平面∥平面,則內(nèi)的任意一條直線都平行于平面,題中說(shuō)法正確;C.由面面平行的判定定理可得:若一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行,題中說(shuō)法正確;D.分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線,不可能相交,題中說(shuō)法正確.本題選擇A選項(xiàng).【點(diǎn)睛】本題考查了空間幾何體的線面位置關(guān)系判定與證明:(1)對(duì)于異面直線的判定要熟記異面直線的概念:把既不平行也不相交的兩條直線稱為異面直線;(2)對(duì)于線面位置關(guān)系的判定中,熟記線面平行與垂直、面面平行與垂直的定理是關(guān)鍵.9、C【解析】
由題意,求出滿足題意的點(diǎn)所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設(shè)正方形的邊長(zhǎng)為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點(diǎn)所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點(diǎn)睛】本題考查幾何概型的概率求法,解題的關(guān)鍵是明確概率模型,屬于基礎(chǔ)題.10、B【解析】隨機(jī)變量服從正態(tài)分布,所以曲線關(guān)于對(duì)稱,且,由,可知,所以,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
把一枚質(zhì)地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個(gè),由此能求出兩次都是正面向上的概率.【詳解】把一枚質(zhì)地均勻的硬幣先后拋擲兩次,基本事件有4個(gè),分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點(diǎn)睛】本題考查古典概型的概率計(jì)算,求解時(shí)注意列舉法的應(yīng)用,即列舉出所有等可能結(jié)果.12、【解析】
首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【詳解】由得,兩邊平方并化簡(jiǎn)得,由于,所以.而,由于,所以【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.13、【解析】
由已知利用同角三角函數(shù)基本關(guān)系式可求,的值,利用兩角差的余弦公式即可計(jì)算得解.【詳解】、為銳角,,,,,,.故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意得出,再利用單位向量的定義即可求解.【詳解】由在軸、軸正方向上的投影分別是、,可得,所以與同向的單位向量為,故答案為:【點(diǎn)睛】本題考查了向量的坐標(biāo)表示以及單位向量的定義,屬于基礎(chǔ)題.15、【解析】
先利用正弦定理求出c=2,分析得到當(dāng)點(diǎn)在的垂直平分線上時(shí),邊上的高最大,的面積最大,利用余弦定理求出,最后求面積的最大值.【詳解】由可得,由正弦定理,得,故,當(dāng)點(diǎn)在的垂直平分線上時(shí),邊上的高最大,的面積最大,此時(shí).由余弦定理知,,即,故面積的最大值為.故答案為【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.16、【解析】
從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對(duì)稱的,所得結(jié)果一樣,另外一種是以側(cè)棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對(duì)稱,求得結(jié)果一樣,故解題時(shí)選擇以BC為軸展開與BB1為軸展開兩種方式驗(yàn)證即可【詳解】由題意,若以BC為軸展開,則AP兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為4,6,故兩點(diǎn)之間的距離是若以BB1為軸展開,則AP兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為2,8,故兩點(diǎn)之間的距離是故沿正方體表面從點(diǎn)A到點(diǎn)P的最短路程是cm故答案為【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,求解的關(guān)鍵是能夠根據(jù)題意把求幾何體表面上兩點(diǎn)距離問(wèn)題轉(zhuǎn)移到平面中來(lái)求三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)利用正弦定理,可得,然后利用,可得結(jié)果.(2)【詳解】在中,,又,,所以,又是銳角三角形所以,所以又,則,所以故(2)由,所以,即由銳角三角形,所以所以,所以故,則所以【點(diǎn)睛】本題主要考查正弦定理邊角互換,重點(diǎn)掌握公式,難點(diǎn)在于對(duì)角度范圍求取,屬中檔題.18、(1)或。(2)、、、,或、、、【解析】
(1)由正弦的倍角公式,化簡(jiǎn)得,得到解得或,結(jié)合正弦和余弦的性質(zhì),即可求解;(2)設(shè)這四個(gè)數(shù)分別為,得到,且,即可求解,得到答案.【詳解】(1)由題意,方程,可得,即,解得或,所以或.(2)由題意,設(shè)這四個(gè)數(shù)分別為,可得,且,解得:或,所以這四個(gè)數(shù)為:、、、,或、、、.【點(diǎn)睛】本題主要考查了三角方程的求解,以及等差、等比中項(xiàng)的應(yīng)用,其中解答中熟記三角恒等變換的公式,以及等差、等比數(shù)列中項(xiàng)公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.19、(1)0;(2);(3)【解析】
(1)結(jié)合二次函數(shù)的性質(zhì)可判斷g(x)在[1,2]上的單調(diào)性,結(jié)合已知函數(shù)的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,結(jié)合對(duì)數(shù)與二次函數(shù)的性質(zhì)可求;(3)原方程可化為|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)=0,利用換元q=|ex﹣1|,結(jié)合二次函數(shù)的實(shí)根分布即可求解.【詳解】(1)因?yàn)樵谏鲜窃龊瘮?shù),所以,解得.(2)由(1)可得:所以不等式在上恒成立.等價(jià)于在上恒成立令,因?yàn)?,所以則有在恒成立令,,則所以,即,所以實(shí)數(shù)的取值范圍為.(3)因?yàn)榱?,由題意可知令,則函數(shù)有三個(gè)不同的零點(diǎn)等價(jià)于在有兩個(gè)零點(diǎn),當(dāng),此時(shí)方程,此時(shí)關(guān)于方程有三個(gè)零點(diǎn),符合題意;當(dāng)記為,,且,,所以,解得綜上實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了二次函數(shù)的單調(diào)性的應(yīng)用,不等式中的恒成立問(wèn)題與最值的相互轉(zhuǎn)化,二次函數(shù)的實(shí)根分布問(wèn)題等知識(shí)的綜合應(yīng)用,是中檔題20、(1);(2).【解析】
(1)利用點(diǎn)到直線的距離公式得到圓心到直線的距離,利用直線截圓得到的弦長(zhǎng)公式可得半徑r,從而得到圓的方程;(2)由已知可得直線l1恒過(guò)定點(diǎn)P(1,1),設(shè)MN的中點(diǎn)Q(x,y),由已知可得,利用兩點(diǎn)間的距離公式化簡(jiǎn)可得答案.【詳解】(1)根據(jù)題意,圓的圓心為(0,0),半徑為r,則圓心到直線l的距離,若直線截圓所得的弦長(zhǎng)為,則有,解可得,則圓的方程為;(2)直線l1的方程為,即,則有,解得,即P的坐標(biāo)為(1,1),點(diǎn)在圓上,且,為線段的中點(diǎn),則,設(shè)MN的中點(diǎn)為Q(x,y),則,即,化簡(jiǎn)可得:即為點(diǎn)Q的軌跡方程.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線被圓截得的弦長(zhǎng)公式的應(yīng)用,考查直線恒過(guò)定點(diǎn)問(wèn)題和軌跡問(wèn)題,屬于中檔題.21、(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年四川宜賓事業(yè)單位歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上海煙草集團(tuán)上海牡丹香精香料限公司招聘2人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年黑龍江雞西市事業(yè)單位招聘工作人員120人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年四川綿陽(yáng)園城融合發(fā)展集團(tuán)限責(zé)任公司公開招聘工作人員25人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年度大學(xué)生畢業(yè)論文保密協(xié)議及論文數(shù)據(jù)保護(hù)合同3篇
- 2025年度房地產(chǎn)開發(fā)土地轉(zhuǎn)讓居間服務(wù)合同3篇
- 2025年度合同風(fēng)險(xiǎn)控制最佳軟件采購(gòu)合同書2篇
- 2025年度定點(diǎn)醫(yī)療機(jī)構(gòu)醫(yī)療設(shè)備升級(jí)改造合作合同
- 2025年度多股東合作協(xié)議書:新能源儲(chǔ)能技術(shù)研發(fā)合作協(xié)議范文3篇
- 2025年度二零二五年度體育產(chǎn)業(yè)員工聘用合同2篇
- 2023年江蘇省五年制專轉(zhuǎn)本英語(yǔ)統(tǒng)考真題(試卷+答案)
- 藝術(shù)音樂(lè)鑒賞與實(shí)踐智慧樹知到答案2024年臨沂市信息工程學(xué)校
- 班主任技能大賽真題及答案
- 山東省濟(jì)南市2023-2024學(xué)年高二年級(jí)上冊(cè)1月期末英語(yǔ)試題(解析版)
- 2023年全國(guó)職業(yè)院校技能大賽-聲樂(lè)、器樂(lè)表演賽項(xiàng)規(guī)程
- 2025年高考數(shù)學(xué)復(fù)習(xí)大題題型歸納:專題07 數(shù)列中的構(gòu)造問(wèn)題(解析)
- 22G101三維彩色立體圖集
- 從創(chuàng)意到創(chuàng)業(yè)智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
- 建筑施工安全生產(chǎn)治本攻堅(jiān)三年行動(dòng)方案(2024-2026年)
- 瀝青路面養(yǎng)護(hù)銑刨施工技術(shù)規(guī)范.文檔
- 萬(wàn)科物業(yè)服務(wù)工作手冊(cè)
評(píng)論
0/150
提交評(píng)論