版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆上海市楊思高中數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.42.在正方體中,、分別是棱和的中點,為上底面的中心,則直線與所成的角為()A.30° B.45° C.60° D.90°3.已知四面體中,,分別是,的中點,若,,與所成角的度數(shù)為30°,則與所成角的度數(shù)為()A.90° B.45° C.60° D.30°4.已知不等式的解集為,則不等式的解集為()A. B.C. D.5.已知中,,,,則B等于()A. B.或 C. D.或6.中,已知,則角()A.90° B.105° C.120° D.135°7.已知與之間的幾組數(shù)據(jù)如下表則與的線性回歸方程必過()A.點 B.點C.點 D.點8.已知,其中,則()A. B. C. D.9.已知是非零向量,若,且,則與的夾角為()A. B. C. D.10.已知直線3x?y+1=0的傾斜角為α,則A. B.C.? D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知銳角、滿足,,則________.12.求374與238的最大公約數(shù)結(jié)果用5進(jìn)制表示為_________.13.若的面積,則=14.?dāng)?shù)列滿足,(且),則數(shù)列的通項公式為________.15.在中,已知M是AB邊所在直線上一點,滿足,則________.16.函數(shù)的值域為_____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列an滿足a3=5,a6=a4(1)求數(shù)列an,b(2)設(shè)cn=anbn218.設(shè)函數(shù).(1)若,解不等式;(2)若對一切實數(shù),恒成立,求實數(shù)的取值范圍.19.已知數(shù)列前項和為,滿足,(1)證明:數(shù)列是等差數(shù)列,并求;(2)設(shè),求證:.20.在中,D是線段AB上靠近B的一個三等分點,E是線段AC上靠近A的一個四等分點,,設(shè),.(1)用,表示;(2)設(shè)G是線段BC上一點,且使,求的值.21.如圖,在正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,連接.(1)求證:;(2)點是上一點,若平面,則為何值?并說明理由.(3)若,求二面角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
等比數(shù)列的公比設(shè)為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【詳解】等比數(shù)列的公比設(shè)為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【點睛】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎(chǔ)題.2、A【解析】
先通過平移將兩條異面直線平移到同一個起點,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.【詳解】解:先畫出圖形,將平移到,為直線與所成的角,設(shè)正方體的邊長為,,,,,,故選:.【點睛】本題主要考查了異面直線及其所成的角,以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.3、A【解析】
取的中點,利用三角形中位線定理,可以得到,與所成角為,運用三角形中位線定理和正弦定理,可以求出的大小,也就能求出與所成角的度數(shù).【詳解】取的中點連接,如下圖所示:因為,分別是,的中點,所以有,因為與所成角的度數(shù)為30°,所以,與所成角的大小等于的度數(shù).在中,,故本題選A.【點睛】本題考查了異面直線所成角的求法,考查了正弦定理,取中點利用三角形中位線定理是解題的關(guān)鍵.4、A【解析】
根據(jù)一元二次不等式的解集與一元二次方程根的關(guān)系,結(jié)合韋達(dá)定理可構(gòu)造方程求得;利用一元二次不等式的解法可求得結(jié)果.【詳解】的解集為和是方程的兩根,且,解得:解得:,即不等式的解集為故選:【點睛】本題考查一元二次不等式的解法、一元二次不等式的解集與一元二次方程根的關(guān)系等知識的應(yīng)用;關(guān)鍵是能夠通過一元二次不等式的解集確定一元二次方程的根,進(jìn)而利用韋達(dá)定理構(gòu)造方程求得變量.5、D【解析】
根據(jù)題意和正弦定理求出sinB的值,由邊角關(guān)系、內(nèi)角的范圍、特殊角的三角函數(shù)值求出B.【詳解】由題意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,則B=60°或B=120°,故選:D.【點睛】本題考查正弦定理,以及邊角關(guān)系的應(yīng)用,注意內(nèi)角的范圍,屬于基礎(chǔ)題.6、C【解析】
由誘導(dǎo)公式和兩角差的正弦公式化簡已知不等式可求得關(guān)系,求出后即可求得.【詳解】,∴,是三角形內(nèi)角,,,則由得,∴,從而.故選:C.【點睛】本題考查兩角差的正弦公式和誘導(dǎo)公式,考查正弦函數(shù)性質(zhì).已知三角函數(shù)值只要確定了角的范圍就可求角.7、C【解析】
根據(jù)線性回歸方程必過樣本中心點,即可得到結(jié)論.【詳解】,,8根據(jù)線性回歸方程必過樣本中心點,可得與的線性回歸方程必過.故選:C.【點睛】本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程必過樣本中心點,屬于基礎(chǔ)題.8、D【解析】
先根據(jù)同角三角函數(shù)關(guān)系求得,再根據(jù)二倍角正切公式得結(jié)果.【詳解】因為,且,所以,因為,所以,因此,從而,,選D.【點睛】本題考查同角三角函數(shù)關(guān)系以及二倍角正切公式,考查基本分析求解能力,屬基礎(chǔ)題.9、D【解析】
由得,這樣可把且表示出來.【詳解】∵,∴,,∴,∴,故選D.【點睛】本題考查向量的數(shù)量積,掌握數(shù)量積的定義是解題關(guān)鍵.10、A【解析】
由題意利用直線的傾斜角和斜率求出tanα的值,再利用三角恒等變換,求出要求式子的值.【詳解】直線3x-y+1=0的傾斜角為α,∴tanα=3,
∴,
故選A.【點睛】本題主要考查直線的傾斜角和斜率,三角恒等變換,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】試題分析:由題意,所以.考點:三角函數(shù)運算.12、【解析】
根據(jù)最大公約數(shù)的公式可求得兩個數(shù)的最大公約數(shù),再由除取余法即可將進(jìn)制進(jìn)行轉(zhuǎn)換.【詳解】374與238的最大公約數(shù)求法如下:,,,,所以兩個數(shù)的最大公約數(shù)為34.由除取余法可得:所以將34化為5進(jìn)制后為,故答案為:.【點睛】本題考查了最大公約數(shù)的求法,除取余法進(jìn)行進(jìn)制轉(zhuǎn)化的應(yīng)用,屬于基礎(chǔ)題.13、【解析】試題分析:,.考點:三角形的面積公式及余弦定理的變形.點評:由三角形的面積公式,再根據(jù),直接可求出tanC的值,從而得到C.14、【解析】
利用累加法和裂項求和得到答案.【詳解】當(dāng)時滿足故答案為【點睛】本題考查了數(shù)列的累加法,裂項求和法,意在考查學(xué)生對于數(shù)列公式和方法的靈活運用.15、3【解析】
由M在AB邊所在直線上,則,又,然后將,都化為,即可解出答案.【詳解】因為M在直線AB上,所以可設(shè),
可得,即,又,則由與不共線,所以,解得.故答案為:3【點睛】本題考查向量的減法和向量共線的利用,屬于基礎(chǔ)題.16、【解析】
分析函數(shù)在區(qū)間上的單調(diào)性,由此可求出該函數(shù)在區(qū)間上的值域.【詳解】由于函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),所以,函數(shù)在區(qū)間上也為增函數(shù),且,,當(dāng)時,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,解題的關(guān)鍵就是判斷出函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=2n-1,【解析】
(1)利用等差數(shù)列、等比數(shù)列的通項公式即可求得;(2)由(1)知,cn=anbn2【詳解】(1)設(shè)等差數(shù)列an的公差為d,等比數(shù)列bn的公比為因為a6=a4+4所以an由b3b5又顯然b4必與b2同號,所以所以q2=b所以bn(2)由(1)知,cn則Tn12①-②,得1=1+1-所以Tn【點睛】用錯位相減法求和應(yīng)注意的問題(1)要善于識別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫出“Sn”與“qSn”的表達(dá)式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準(zhǔn)確寫出“Sn-qSn”的表達(dá)式;(3)在應(yīng)用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.18、(1)或;(2)【解析】
(1)時,不等式化為,求解即可;(2)分和兩種情況分類討論,并結(jié)合二次函數(shù)的性質(zhì),可求出答案.【詳解】(1)時,不等式化為,即,解得或,即解集為:或.(2)當(dāng)時,,符合題意,當(dāng)時,由題意得,解得,綜上所述,實數(shù)的取值范圍是:.【點睛】本題考查不等式恒成立問題,考查一元二次不等式的解法,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.19、(1).(2)見解析.【解析】(1)由可得,當(dāng)時,,兩式相減可是等差數(shù)列,結(jié)合等差數(shù)列的通項公式可求進(jìn)而可求(2)由(1)可得,利用裂項相消法可求和,即可證明.試題分析:(1)(2)試題解析:(1)由知,當(dāng)即所以而故數(shù)列是以1為首項,1為公差的等差數(shù)列,且(2)因為所以考點:數(shù)列遞推式;等差關(guān)系的確定;數(shù)列的求和20、(1)(2)【解析】
(1)依題意可得、,再根據(jù),計算可得;(2)設(shè)存在實數(shù),使得,由因為,所以存在實數(shù),使,再根據(jù)向量相等的充要條件得到方程組,解得即可;【詳解】解:(1)因為D是線段AB上靠近B的一個三等分點,所以.因為E是線段AC上靠近A的一個四等分點,所以,所以.因為,所以,則.又,.所以.(2)因為G是線段BC上一點,所以存在實數(shù),使得,則因為,所以存在實數(shù),使,即,整理得解得,故.【點睛】本題考查平面向量的線性運算及平面向量共線定理的應(yīng)用,屬于中檔題.21、(1)證明見詳解;(2),理由見詳解;(3).【解析】
(1)通過證明EF平面PBD,即可證明;(2)通過線面平行,將問題轉(zhuǎn)化為線線平行,在平面圖形中根據(jù)線段比例進(jìn)而求解;(3)根據(jù)(1)(2)所得,找到二面角的平面角,然后再進(jìn)行求解.【詳解】(1)證明:因為四邊形ABCD為正方形,故DAAE,DC,即折疊后的DP又因為平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即證.(2)連接BD交EF于O,連接OM,作圖如下因為//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分別是正方形ABCD兩邊的中點,故可得即為所求.(3)過M作MH垂直于BD,垂足為H,連接OP,作圖如下:由(1)可知:EF平面PBD,因為MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又因為BDEF,故即為所求二面角的平面角.設(shè)正方形ABCD的邊長為4,因為,故PM=1,故在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年:前配偶贍養(yǎng)費終止條件補充協(xié)議3篇
- 放映員知識培訓(xùn)課件模板
- 校園消防知識培訓(xùn)課件
- 專業(yè)個人勞務(wù)協(xié)議格式2024版樣本版B版
- 2024年租賃合同違約責(zé)任追究協(xié)議
- 2024影視公司與特效公司的委托特效制作合同
- 礦泉水行業(yè)知識培訓(xùn)課件
- 2025年度環(huán)境監(jiān)測數(shù)據(jù)采集與分析合同3篇
- 2024年民事離婚合同規(guī)范化文檔版B版
- 《男科網(wǎng)絡(luò)推廣方案》課件
- 河道治理工程監(jiān)理通知單、回復(fù)單范本
- 超分子化學(xué)簡介課件
- 文言文閱讀訓(xùn)練:《三國志-武帝紀(jì)》(附答案解析與譯文)
- (完整版)招聘面試方案設(shè)計與研究畢業(yè)論文設(shè)計
- 易制爆化學(xué)品合法用途說明
- 調(diào)休單、加班申請單
- 肉制品生產(chǎn)企業(yè)名錄296家
- 規(guī)劃設(shè)計收費標(biāo)準(zhǔn)
- 大氣喜慶迎新元旦晚會PPT背景
- 山區(qū)道路安全駕駛教案
- 常見浮游植物圖譜(1)
評論
0/150
提交評論