版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省湛江市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)是空間四個不同的點,在下列命題中,不正確的是A.若與共面,則與共面B.若與是異面直線,則與是異面直線C.若==,則D.若==,則=2.在中,角的對邊分別是,若,則角的大小為()A.或 B.或 C. D.3.化簡的結(jié)果是()A. B.C. D.4.已知向量,,則與夾角的大小為()A. B. C. D.5.已知函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)x>0時,f(x)=2x-3,則A.14B.-114C.6.向量,,若,則()A.2 B. C. D.7.二進(jìn)制是計算機(jī)技術(shù)中廣泛采用的一種數(shù)制。二進(jìn)制數(shù)據(jù)是用0和1兩個數(shù)碼來表示的數(shù)。它的基數(shù)為2,進(jìn)位規(guī)則是“逢二進(jìn)一”,借位規(guī)則“借一當(dāng)二”。當(dāng)前的計算機(jī)系統(tǒng)使用的基本上是二進(jìn)制系統(tǒng),計算機(jī)中的二進(jìn)制則是一個非常微小的開關(guān),用1來表示“開”,用0來表示“關(guān)”。如圖所示,把十進(jìn)制數(shù)1010化為二進(jìn)制數(shù)(1010)2,十進(jìn)制數(shù)9910化為二進(jìn)制數(shù)11000112,把二進(jìn)制數(shù)(10110A.932 B.931 C.108.在直角梯形中,,為的中點,若,則A.1 B. C. D.9.若,,且,則與的夾角是()A. B. C. D.10.若,直線的傾斜角等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某校女子籃球隊7名運(yùn)動員身高(單位:cm)分布的莖葉圖如圖,已知記錄的平均身高為175cm,但記錄中有一名運(yùn)動員身高的末位數(shù)字不清晰,如果把其末位數(shù)字記為x,那么x的值為________.12.已知六棱錐的底面是正六邊形,平面,.則下列命題中正確的有_____.(填序號)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直線PD與平面ABC所成的角為45°.13.如圖,在中,,,點D為BC的中點,設(shè),.的值為___________.14.若函數(shù)的圖象過點,則___________.15.函數(shù)的值域是________.16.設(shè)滿足不等式組,則的最小值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,函數(shù).(1)求在區(qū)間上的最大值和最小值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.18.如圖,在四棱錐中,丄平面,,,,,.(1)證明丄;(2)求二面角的正弦值;(3)設(shè)為棱上的點,滿足異面直線與所成的角為,求的長.19.已知關(guān)于的一元二次函數(shù),從集合中隨機(jī)取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機(jī)取一個數(shù)作為此函數(shù)的一次項系數(shù).(1)若,,求函數(shù)有零點的概率;(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.20.如圖所示,在平面直角坐標(biāo)系中,銳角、的終邊分別與單位圓交于,兩點,點.(1)若點,求的值:(2)若,求.21.已知公差大于零的等差數(shù)列滿足:.(1)求數(shù)列通項公式;(2)記,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由空間四點共面的判斷可是A,B正確,;C,D畫出圖形,可以判定AD與BC不一定相等,證明BC與AD一定垂直.【詳解】對于選項A,若與共面,則與共面,正確;對于選項B,若與是異面直線,則四點不共面,則與是異面直線,正確;如圖,空間四邊形ABCD中,AB=AC,DB=DC,則AD與BC不一定相等,∴D錯誤;對于C,當(dāng)四點共面時顯然成立,當(dāng)四點不共面時,取BC的中點M,連接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正確;【點睛】本題通過命題真假的判定,考查了空間中的直線共面與異面以及垂直問題,是綜合題.2、B【解析】
通過給定條件直接利用正弦定理分析,注意討論多解的情況.【詳解】由正弦定理可得:,,∵,∴為銳角或鈍角,∴或.故選B.【點睛】本題考查解三角形中正弦定理的應(yīng)用,難度較易.出現(xiàn)多解時常借助“大邊對大角,小邊對小角”來進(jìn)行取舍.3、D【解析】
確定角的象限,結(jié)合三角恒等式,然后確定的符號,即可得到正確選項.【詳解】因為為第二象限角,所以,故選D.【點睛】本題是基礎(chǔ)題,考查同角三角函數(shù)的基本關(guān)系式,象限三角函數(shù)的符號,考查計算能力,??碱}型.4、D【解析】
根據(jù)向量,的坐標(biāo)及向量夾角公式,即可求出,從而根據(jù)向量夾角的范圍即可求出夾角.【詳解】向量,,則;∴;∵0≤<a,b>≤π;∴<a,b>=.故選:D.【點睛】本題考查數(shù)量積表示兩個向量的夾角,已知向量坐標(biāo)代入夾角公式即可求解,屬于??碱}型,屬于簡單題.5、D【解析】試題分析:函數(shù)f(x)是定義在上的奇函數(shù),,故答案為D.考點:奇函數(shù)的應(yīng)用.6、C【解析】試題分析:,,得得,故選C.考點:向量的垂直運(yùn)算,向量的坐標(biāo)運(yùn)算.7、D【解析】
利用古典概型的概率公式求解.【詳解】二進(jìn)制的后五位的排列總數(shù)為25二進(jìn)制的后五位恰好有三個“1”的個數(shù)為C5由古典概型的概率公式得P=10故選:D【點睛】本題主要考查排列組合的應(yīng)用,考查古典概型的概率的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、B【解析】
連接,因為為中點,得到,可求出,從而可得出結(jié)果.【詳解】連接,因為為中點,,.故選B【點睛】本題主要考查平面向量基本定理的應(yīng)用,熟記平面向量基本定理即可,屬于??碱}型.9、B【解析】
根據(jù)相互垂直的向量數(shù)量積為零,求出與的夾角.【詳解】由題有,即,故,因為,所以.故選:B.【點睛】本題考查了向量的數(shù)量積運(yùn)算,向量夾角的求解,屬于基礎(chǔ)題.10、A【解析】
根據(jù)以及可求出直線的傾斜角.【詳解】,,且直線的斜率為,因此,直線的傾斜角為.故選:A.【點睛】本題考查直線傾斜角的計算,要熟悉斜率與傾斜角之間的關(guān)系,還要根據(jù)傾斜角的取值范圍來求解,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
根據(jù)莖葉圖的數(shù)據(jù)和平均數(shù)的計算公式,列出方程,即可求解,得到答案.【詳解】由題意,可得,即,解得.【點睛】本題主要考查了莖葉圖的認(rèn)識和平均數(shù)的公式的應(yīng)用,其中解答中根據(jù)莖葉圖,準(zhǔn)確的讀取數(shù)據(jù),再根據(jù)數(shù)據(jù)的平均數(shù)的計算公式,列出方程求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、②④【解析】
利用題中條件,逐一分析答案,通過排除和篩選,得到正確答案.【詳解】∵AD與PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六邊形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直線BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案為②④.【點睛】本題考查命題真假的判斷,解題時要注意直線與平面成的角、直線與平面垂直的性質(zhì)的合理運(yùn)用,屬于中檔題.13、【解析】
在和在中,根據(jù)正弦定理,分別表示出.由可得等式,代入已知條件化簡即可得解.【詳解】在中,由正弦定理可得,則在中,由正弦定理可得,則點D為BC的中點,則所以因為,,由誘導(dǎo)公式可知代入上述兩式可得所以故答案為:【點睛】本題考查了正弦定理的簡單應(yīng)用,屬于基礎(chǔ)題.14、【解析】
由過點,求得a,代入,令,即可得到本題答案【詳解】因為的圖象過點,所以,所以,故.故答案為:-5【點睛】本題主要考查函數(shù)的解析式及利用解析式求值.15、【解析】
求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關(guān)系即可求解.【詳解】因為函數(shù),當(dāng)時是單調(diào)減函數(shù)當(dāng)時,;當(dāng)時,所以在上的值域為根據(jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域為故答案為:【點睛】本題求一個反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質(zhì)和反函數(shù)的性質(zhì)等知識,屬于基礎(chǔ)題.16、-6【解析】作出可行域,如圖內(nèi)部(含邊界),作直線,當(dāng)向下平移時,減小,因此當(dāng)過點時,為最小值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用向量的數(shù)量積化簡即可得,再根據(jù),求出的范圍結(jié)合圖像即可解決.(2)根據(jù)(1)求出,再根據(jù)正弦函數(shù)的單調(diào)性求出的單調(diào)區(qū)間即可.【詳解】解:(1)因為所以,所以,所以(2)解法一:令得因為函數(shù)在上是單調(diào)遞增函數(shù),所以存在,使得,所以有因為,所以所以,又因為,得所以從而有所以,所以解法二:由,得因為所以所以解得又所以【點睛】本題主要考查了正弦函數(shù)在給定區(qū)間是的最值以及根據(jù)根據(jù)函數(shù)的單調(diào)性求參數(shù).屬于中等題,解決本題的關(guān)鍵是記住正弦函數(shù)的單調(diào)性、最值等.18、(1)見證明;(2);(3)【解析】
(1)要證異面直線垂直,即證線面垂直,本題需證平面(2)作于點,連接.為二面角的平面角,在中解出即可.(3)過點作的平行線與線段相交,交點為,連接,;計算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的長【詳解】(1)證明:由平面,可得,又由,,故平面.又平面,所以.(2)如圖,作于點,連接.由,,可得平面.因此,從而為二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值為.(3)因為,故過點作的平行線必與線段相交,設(shè)交點為,連接,;∴或其補(bǔ)角為異面直線與所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,設(shè);在中,;在中,;∴在中,,∴;;解得;∴.【點睛】本題主要考查線線垂直、二面角的平面角、異面直線所成角的.屬于中檔題.19、(1);(2)【解析】
(1)依次列出所有可能的情況,求出滿足的情況總數(shù),即可得到概率;(2)列出不等關(guān)系,表示出平面區(qū)域,求出滿足表示的區(qū)域的面積,即可得到概率.【詳解】(1)由題可得,,從集合中隨機(jī)取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機(jī)取一個數(shù)作為此函數(shù)的一次項系數(shù),記為,這樣的有序數(shù)對共有,9種情況;函數(shù)有零點,即滿足,滿足條件的有:,6種情況,所以其概率為;(2),滿足條件的有序數(shù)對,,即平面直角坐標(biāo)系內(nèi)區(qū)域:矩形及內(nèi)部區(qū)域,面積為4,函數(shù)在區(qū)間上是增函數(shù),即滿足,,,即,平面直角坐標(biāo)系內(nèi)區(qū)域:直角梯形及內(nèi)部區(qū)域,面積為3,所以其概率為.【點睛】此題考查古典概型與幾何概型,關(guān)鍵在于準(zhǔn)確得出二次函數(shù)有零點和在區(qū)間上是增函數(shù),分別所對應(yīng)的基本事件個數(shù)以及對應(yīng)區(qū)域的面積.20、(1)(2)【解析】
(1)根據(jù)計算,,代入公式得到答案.(2)根據(jù),得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新能源汽車充電站風(fēng)險評估
- 2024年度金融科技人力資源派遣與產(chǎn)品研發(fā)合同3篇
- 2024山東地區(qū)高新技術(shù)企業(yè)勞動合同規(guī)范文本3篇
- 2024年拆遷補(bǔ)償安置房交易合同
- 馬鞍山職業(yè)技術(shù)學(xué)院《汽車人機(jī)工程學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 呂梁學(xué)院《游戲美術(shù)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度服裝店鋪陳列設(shè)計與管理合同
- 2024年度高品質(zhì)擠塑板供應(yīng)與銷售協(xié)議范本版B版
- 漯河食品職業(yè)學(xué)院《建筑美術(shù)Ⅲ》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025寫字樓租賃合同簽訂有些學(xué)問
- 年產(chǎn)12萬噸甲烷氯化物可行性研究報告
- 腦積水的護(hù)理演示文稿
- 《中級微觀經(jīng)濟(jì)學(xué)》考試復(fù)習(xí)題庫(附答案)
- 方形真空干燥機(jī)驗證方案
- 腫瘤基礎(chǔ)知識示范課件
- 肺炎鏈球菌介紹及肺炎鏈球菌肺炎介紹
- 私營企業(yè)員工年度績效評價表
- 醫(yī)院護(hù)理品管圈成果匯報縮短腦卒中靜脈溶栓患者DNT完整版本PPT易修改
- 防汛物資臺賬參考模板范本
- 氣道廓清技術(shù)及護(hù)理課件
- 體育與健康人教六年級全一冊籃球基礎(chǔ)知識(共15張PPT)
評論
0/150
提交評論