2024屆海南省定安中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第1頁
2024屆海南省定安中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第2頁
2024屆海南省定安中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第3頁
2024屆海南省定安中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第4頁
2024屆海南省定安中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆海南省定安中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)取得最小值時,x+2y-z的最大值為()A.0 B.C.2 D.2.如圖,某人在點處測得某塔在南偏西的方向上,塔頂仰角為,此人沿正南方向前進30米到達(dá)處,測得塔頂?shù)难鼋菫椋瑒t塔高為()A.20米 B.15米 C.12米 D.10米3.如下圖,在四棱錐中,平面ABCD,,,,則異面直線PA與BC所成角的余弦值為()A. B. C. D.4.已知,則的值域為A. B. C. D.5.已知各項均為正數(shù)的數(shù)列的前項和為,且若對任意的,恒成立,則實數(shù)的取值范圍為()A. B. C. D.6.已知向量,且,則的值為()A. B. C. D.7.已知等差數(shù)列共有10項,其中奇數(shù)項之和15,偶數(shù)項之和為30,則其公差是()A.5 B.4 C.3 D.28.已知直線經(jīng)過兩點,則的斜率為()A. B. C. D.9.已知等差數(shù)列的前項和為,若,則()A.18 B.13 C.9 D.710.直線的傾斜角的大小為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列的前項和為,,,則________.12.為等比數(shù)列,若,則_______.13.382與1337的最大公約數(shù)是__________.14.若扇形的周長是,圓心角是度,則扇形的面積(單位)是__________.15.已知點P(tanα,cosα)在第三象限,則角α的終邊在第________象限.16.在中,角、、所對的邊為、、,若,,,則角________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.中,內(nèi)角,,所對的邊分別是,,,已知.(1)求角的大小;(2)設(shè),的面積為,求的值.18.已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若,證明:函數(shù)必有局部對稱點;(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)的取值范圍;(3)若函數(shù)在上有局部對稱點,求實數(shù)的取值范圍.19.現(xiàn)有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.(1)求被選中的概率;(2)求和不全被選中的概率.20.如圖,四邊形ABCD是平行四邊形,點E,F(xiàn),G分別為線段BC,PB,AD的中點.(1)證明:EF∥平面PAC;(2)證明:平面PCG∥平面AEF;(3)在線段BD上找一點H,使得FH∥平面PCG,并說明理由.21.已知函數(shù)的部分圖象如圖所示.(1)求的解析式;(2)求的單調(diào)增區(qū)間并求出取得最小值時所對應(yīng)的x取值集合.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由題得z=x2+4y2-3xy≥4xy-3xy=xy(x,y,z>0),即z≥xy,≥1.當(dāng)且僅當(dāng)x=2y時等號成立,則x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2[(y-1)2-1]=-2(y-1)2+2.當(dāng)y=1時,x+2y-z有最大值2.故選C.2、B【解析】

設(shè)塔底為,塔高為,根據(jù)已知條件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【詳解】設(shè)塔底為,塔高為,故,由于,所以在三角形中,由余弦定理得,解得米.故選B.【點睛】本小題主要考查利用余弦定理解三角形,考查空間想象能力,屬于基礎(chǔ)題.3、B【解析】

作出異面直線PA與BC所成角,結(jié)合三角形的知識可求.【詳解】取的中點,連接,如圖,因為,,所以四邊形是平行四邊形,所以;所以或其補角是異面直線PA與BC所成角;設(shè),則,;因為,所以;因為平面ABCD,所以,在三角形中,.故選:B.【點睛】本題主要考查異面直線所成角的求解,作出異面直線所成角,結(jié)合三角形知識可求.側(cè)重考查直觀想象的核心素養(yǎng).4、C【解析】

利用求函數(shù)的周期為,計算即可得到函數(shù)的值域.【詳解】因為,,,因為函數(shù)的周期,所以函數(shù)的值域為,故選C.【點睛】本題考查函數(shù)的周期運算,及利用函數(shù)的周期性求函數(shù)的值域.5、C【解析】

由得到an=n,任意的,恒成立等價于,利用作差法求出的最小值即可.【詳解】當(dāng)n=1時,,又∴∵an+12=2Sn+n+1,∴當(dāng)n≥2時,an2=2Sn﹣1+n,兩式相減可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵數(shù)列{an}是各項均為正數(shù)的數(shù)列,∴an+1=an+1,即an+1﹣an=1,顯然n=1時,適合上式∴數(shù)列{an}是等差數(shù)列,首項為1,公差為1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立記,,∴為單調(diào)增數(shù)列,即的最小值為∴,即故選C【點睛】已知求的一般步驟:(1)當(dāng)時,由求的值;(2)當(dāng)時,由,求得的表達(dá)式;(3)檢驗的值是否滿足(2)中的表達(dá)式,若不滿足則分段表示;(4)寫出的完整表達(dá)式.6、B【解析】

由向量平行可構(gòu)造方程求得結(jié)果.【詳解】,解得:故選:【點睛】本題考查根據(jù)向量平行求解參數(shù)值的問題,關(guān)鍵是明確兩向量平行可得.7、C【解析】,故選C.8、A【解析】

直接代入兩點的斜率公式,計算即可得出答案?!驹斀狻抗蔬xA【點睛】本題考查兩點的斜率公式,屬于基礎(chǔ)題。9、B【解析】

利用等差數(shù)列通項公式、前項和列方程組,求出,.由此能求出.【詳解】解:等差數(shù)列的前項和為,,,,解得,..故選:.【點睛】本題考查等差數(shù)列第7項的值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.10、B【解析】

由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選.二、填空題:本大題共6小題,每小題5分,共30分。11、18【解析】

利用,化簡得到數(shù)列是首項為,公比為的等比數(shù)列,利用,即可求解.【詳解】,即所以數(shù)列是首項為,公比為的等比數(shù)列即所以故答案為:【點睛】本題主要考查了與的關(guān)系以及等比數(shù)列的通項公式,屬于基礎(chǔ)題.12、【解析】

將這兩式中的量全部用表示出來,正好有兩個方程,兩個未知數(shù),解方程組即可求出。【詳解】相當(dāng)于,相當(dāng)于,上面兩式相除得代入就得,【點睛】基本量法是解決數(shù)列計算題最重要的方法,即將條件全部用首項和公比表示,列方程,解方程即可求得。13、191【解析】

利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因為,,所以382與1337的最大公約數(shù)為191,故填:.【點睛】本題考查利用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公因數(shù),屬于容易題.14、16【解析】

根據(jù)已知條件可計算出扇形的半徑,然后根據(jù)面積公式即可計算出扇形的面積.【詳解】設(shè)扇形的半徑為,圓心角弧度數(shù)為,所以即,所以,所以.故答案為:.【點睛】本題考查角度與弧度的轉(zhuǎn)化以及扇形的弧長和面積公式,難度較易.扇形的弧長公式:,扇形的面積公式:.15、二【解析】

由點P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【詳解】因為點P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點評:本題考查第三象限內(nèi)的點的坐標(biāo)的符號,以及三角函數(shù)在各個象限內(nèi)的符號.16、.【解析】

利用余弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由余弦定理得,,,故答案為.【點睛】本題考查余弦定理的應(yīng)用和反三角函數(shù),解題時要充分結(jié)合元素類型選擇正弦定理和余弦定理解三角形,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理可將已知等式化為,利用兩角和差余弦公式展開整理可求得,根據(jù)可求得結(jié)果;(2)利用三角形面積公式可構(gòu)造方程求出;利用余弦定理可直接求得結(jié)果.【詳解】(1)由正弦定理可得:,即(2)設(shè)的面積為,則由得:,解得:由余弦定理得:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、三角形面積公式和余弦定理的應(yīng)用;關(guān)鍵是能夠通過正弦定理將邊化角,得到角的一個三角函數(shù)值,從而根據(jù)角的范圍求得結(jié)果.18、(1)見解析;(2);(3)【解析】

試題分析:(1)利用題中所給的定義,通過二次函數(shù)的判別式大于0,證明二次函數(shù)有局部對稱點;(2)利用方程有解,通過換元,轉(zhuǎn)化為打鉤函數(shù)有解問題,利用函數(shù)的圖象,確定實數(shù)c的取值范圍;(3)利用方程有解,通過換元,轉(zhuǎn)化為二次函數(shù)在給定區(qū)間有解,建立不等式組,通過解不等式組,求得實數(shù)的取值范圍.試題解析:(1)由得=,代入得,=,得到關(guān)于的方程=).其中,由于且,所以恒成立,所以函數(shù)=)必有局部對稱點.(2)方程=在區(qū)間上有解,于是,設(shè)),,,其中,所以.(3),由于,所以=.于是=(*)在上有解.令),則,所以方程(*)變?yōu)?在區(qū)間內(nèi)有解,需滿足條件:.即,,化簡得.19、(1);(2).【解析】

(1)從8人中選出日語、俄語和韓語志愿者各1名,其一切可能的結(jié)果組成的基本事件空間{,,,,,,,,}由18個基本事件組成.由于每一個基本事件被抽取的機會均等,因此這些基本事件的發(fā)生是等可能的.用表示“恰被選中”這一事件,則{,}事件由6個基本事件組成,因而.(2)用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于{},事件有3個基本事件組成,所以,由對立事件的概率公式得.20、(1)見解析(2)見解析(3)見解析【解析】

(1)證明,EF∥平面PAC即得證;(2)證明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得證;(3)設(shè)AE,GC與BD分別交于M,N兩點,證明N點為所找的H點.【詳解】(1)證明:∵E、F分別是BC,BP中點,∴,∵PC?平面PAC,EF?平面PAC,∴EF∥平面PAC.(2)證明:∵E、G分別是BC、AD中點,∴AE∥CG,∵AE?平面PCG,CG?平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC?平面PCG,EF?平面PCG,∴EF∥平面PCG,AE∩EF=E點,AE,EF?平面AEF,∴平面AEF∥平面PCG.(3)設(shè)AE,GC與BD分別交于M,N兩點,易知F,N分別是BP,BM中點,∴,∵PM?平面PGC,F(xiàn)N?平面PGC,∴FN∥平面PGC,即N點為所找的H點.【點睛】本題主要考查空間平行位置關(guān)系的證明,考查立體幾何的探究性問題的解決,意在考查學(xué)生對這些知識的理解掌握水平.21、(1)(2)單調(diào)增區(qū)間為,();x取值集合,()【解析】

(1)先由函數(shù)的最大值求出的值,再由圖中對稱軸與相鄰對稱中心之間的距離得出最小正周期,于此得出,再將點代入函數(shù)的解析式結(jié)合的范圍得出的值,于此可得出函數(shù)的解析式;(2)解不等式可得出函數(shù)的單調(diào)遞增區(qū)間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論