2022年黑龍江省哈爾濱市阿城區(qū)重點名校中考聯(lián)考數(shù)學試卷含解析_第1頁
2022年黑龍江省哈爾濱市阿城區(qū)重點名校中考聯(lián)考數(shù)學試卷含解析_第2頁
2022年黑龍江省哈爾濱市阿城區(qū)重點名校中考聯(lián)考數(shù)學試卷含解析_第3頁
2022年黑龍江省哈爾濱市阿城區(qū)重點名校中考聯(lián)考數(shù)學試卷含解析_第4頁
2022年黑龍江省哈爾濱市阿城區(qū)重點名校中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年黑龍江省哈爾濱市阿城區(qū)重點名校中考聯(lián)考數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.2.由4個相同的小立方體搭成的幾何體如圖所示,則它的主視圖是()A.B.C.D.3.計算(—2)2-3的值是()A、1B、2C、—1D、—24.下列四個命題,正確的有()個.①有理數(shù)與無理數(shù)之和是有理數(shù)②有理數(shù)與無理數(shù)之和是無理數(shù)③無理數(shù)與無理數(shù)之和是無理數(shù)④無理數(shù)與無理數(shù)之積是無理數(shù).A.1 B.2 C.3 D.45.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.56.2018年我市財政計劃安排社會保障和公共衛(wèi)生等支出約1800000000元支持民生幸福工程,數(shù)1800000000用科學記數(shù)法表示為()A.18×108B.1.8×108C.1.8×109D.0.18×10107.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.8.若關于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..9.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.8410.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內(nèi)部五個小直角三角形的周長為_____.12.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關系為________.(填“>”或“<”)13.計算:____________14.一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的體積為______.15.已知且,則=__________.16.甲乙兩種水稻試驗品中連續(xù)5年的平均單位面積產(chǎn)量如下(單位:噸/公頃)品種

第1年

第2年

第3年

第4年

第5年

品種

9.8

9.9

10.1

10

10.2

9.4

10.3

10.8

9.7

9.8

經(jīng)計算,,試根據(jù)這組數(shù)據(jù)估計_____中水稻品種的產(chǎn)量比較穩(wěn)定.三、解答題(共8題,共72分)17.(8分)隨著移動計算技術和無線網(wǎng)絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:本次接受隨機抽樣調(diào)查的學生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).18.(8分)某中學九年級數(shù)學興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進6米到達D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結果精確到米,,19.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.20.(8分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.21.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.22.(10分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.23.(12分)(1)計算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數(shù)軸上表示出來.24.如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當AB=8,CE=2時,求AC的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:根據(jù)主視圖和俯視圖之間的關系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.2、A【解析】試題分析:幾何體的主視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.考點:三視圖視頻3、A【解析】本題考查的是有理數(shù)的混合運算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數(shù)的加法、乘方法則。4、A【解析】解:①有理數(shù)與無理數(shù)的和一定是有理數(shù),故本小題錯誤;②有理數(shù)與無理數(shù)的和一定是無理數(shù),故本小題正確;③例如=0,0是有理數(shù),故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數(shù),故本小題錯誤.故選A.點睛:本題考查的是實數(shù)的運算及無理數(shù)、有理數(shù)的定義,熟知以上知識是解答此題的關鍵.5、D【解析】

①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關鍵,并熟練掌握同高三角形面積的關系.6、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:1800000000=1.8×109,故選:C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.7、B【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.8、A【解析】

根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.9、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.10、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:由圖形可知,內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個小直角三角形的周長為AC+BC+AB=1.故答案為1.點睛:本題主要考查了平移的性質(zhì),需要注意的是:平移前后圖形的大小、形狀都不改變.12、>【解析】

觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動?。徊▌釉叫≡椒€(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動小;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.13、y【解析】

根據(jù)冪的乘方和同底數(shù)冪相除的法則即可解答.【詳解】【點睛】本題考查了冪的乘方和同底數(shù)冪相除,熟練掌握:冪的乘方,底數(shù)不變,指數(shù)相乘的法則及同底數(shù)冪相除,底數(shù)不變,指數(shù)相減是關鍵.14、1.【解析】試題解析:設俯視圖的正方形的邊長為.∵其俯視圖為正方形,從主視圖可以看出,正方形的對角線長為∴解得∴這個長方體的體積為4×3=1.15、【解析】分析:根據(jù)相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點睛:本題的關鍵是理解相似三角形的面積比等于相似比的平方.16、甲【解析】

根據(jù)方差公式分別求出兩種水稻的產(chǎn)量的方差,再進行比較即可.【詳解】甲種水稻產(chǎn)量的方差是:,乙種水稻產(chǎn)量的方差是:,∴0.02<0.124.∴產(chǎn)量比較穩(wěn)定的小麥品種是甲.三、解答題(共8題,共72分)17、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】

(Ⅰ)利用家庭中擁有1臺移動設備的人數(shù)除以其所占百分比即可得調(diào)查的學生人數(shù),將擁有4臺移動設備的人數(shù)除以總?cè)藬?shù)即可求得m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權平均數(shù)的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設備的學生人數(shù)所占比例乘以總?cè)藬?shù)1500即可求解.【詳解】解:(Ⅰ)本次接受隨機抽樣調(diào)查的學生人數(shù)為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數(shù)據(jù)中,4出現(xiàn)了16次,出現(xiàn)次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為4;∵將這組數(shù)據(jù)從小到大排列,其中處于中間的兩個數(shù)均為3,有=3,∴這組數(shù)據(jù)的中位數(shù)是3;由條形統(tǒng)計圖可得=3.1,∴這組數(shù)據(jù)的平均數(shù)是3.1.(Ⅲ)1500×18%=410(人).答:估計該校學生家庭中;擁有3臺移動設備的學生人數(shù)約為410人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、14.2米;【解析】

Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據(jù)CD=BC-BD可得關于AB的方程,解方程可得.【詳解】設米∵∠C=45°在中,米,,

又米,在中Tan∠ADB=,Tan60°=解得答,建筑物的高度為米.【點睛】本題考查解直角三角形的應用-仰角俯角問題,解題的關鍵是利用數(shù)形結合的思想找出各邊之間的關系,然后找出所求問題需要的條件.19、(1)見解析(2)6【解析】

(1)利用對應兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:20、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標,表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.21、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論