2023-2024學年河南省新鄉(xiāng)市重點初中高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第1頁
2023-2024學年河南省新鄉(xiāng)市重點初中高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第2頁
2023-2024學年河南省新鄉(xiāng)市重點初中高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第3頁
2023-2024學年河南省新鄉(xiāng)市重點初中高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第4頁
2023-2024學年河南省新鄉(xiāng)市重點初中高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河南省新鄉(xiāng)市重點初中高一數(shù)學第二學期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點是角終邊上一點,則的值為()A. B. C. D.2.設函數(shù)是定義在上的奇函數(shù),當時,,則()A.-4 B. C. D.3.將函數(shù)的圖象向右平移個單位長度,所得圖象對應的函數(shù)解析式是A. B. C. D.4.從三件正品、一件次品中隨機取出兩件,則取出的產品全是正品的概率是()A. B. C. D.5.邊長為的正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,則直線與平面所成角的正弦值為()A. B. C. D.6.從裝有5個紅球和3個白球的口袋內任取3個球,那么互斥而不對立的事件是()A.至少有一個紅球與都是紅球B.至少有一個紅球與都是白球C.恰有一個紅球與恰有二個紅球D.至少有一個紅球與至少有一個白球7.已知:,則()A. B. C. D.8.某幾何體三視圖如圖所示,則該幾何體中的棱與面相互平行的有()A.2對 B.3對 C.4對 D.5對9.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則10.袋中有個大小相同的小球,其中個白球,個紅球,個黑球,現(xiàn)在從中任意取一個,則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若的面積,則=12.若關于的不等式的解集為,則__________13.設為正偶數(shù),,則____________.14.若,則函數(shù)的最小值是_________.15.直線與圓交于兩點,若為等邊三角形,則______.16.在中,角A,B,C所對的邊分別為a,b,c,,的平分線交AC于點D,且,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.交通指數(shù)是指交通擁堵指數(shù)的簡稱,是綜合反映道路網暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個級別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴重擁堵.在晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據其交通指數(shù)數(shù)據繪制的頻率分布直方圖如圖所示.(1)求出輕度擁堵、中度擁堵、嚴重擁堵的路段的個數(shù);(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴重擁堵的路段中共抽取6個路段,求依次抽取的三個級別路段的個數(shù);(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.18.在平面直角坐標中,圓與圓相交與兩點.(I)求線段的長.(II)記圓與軸正半軸交于點,點在圓C上滑動,求面積最大時的直線的方程.19.已知函數(shù)f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函數(shù)f(x)的值域及最小正周期;(2)如圖,在四邊形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面積S△ABC.20.如圖,圓錐中,是圓的直徑,是底面圓上一點,且,點為半徑的中點,連.(Ⅰ)求證:平面;(Ⅱ)當是邊長為4的正三角形時,求點到平面的距離.21.設函數(shù)和都是定義在集合上的函數(shù),對于任意的,都有成立,稱函數(shù)與在上互為“互換函數(shù)”.(1)函數(shù)與在上互為“互換函數(shù)”,求集合;(2)若函數(shù)(且)與在集合上互為“互換函數(shù)”,求證:;(3)函數(shù)與在集合且上互為“互換函數(shù)”,當時,,且在上是偶函數(shù),求函數(shù)在集合上的解析式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

利用三角函數(shù)的定義求出的值,然后利用誘導公式可求出的值.【詳解】由三角函數(shù)的定義可得,由誘導公式可得.故選A.【點睛】本題考查三角函數(shù)的定義,同時也考查了利用誘導公式求值,在利用誘導公式求值時,充分理解“奇變偶不變,符號看象限”這個規(guī)律,考查計算能力,屬于基礎題.2、A【解析】

由奇函數(shù)的性質可得:即可求出【詳解】因為是定義在上的奇函數(shù),所以又因為當時,,所以,所以,選A.【點睛】本題主要考查了函數(shù)的性質中的奇偶性。其中奇函數(shù)主要有以下幾點性質:1、圖形關于原點對稱。2、在定義域上滿足。3、若定義域包含0,一定有。3、B【解析】

利用三角函數(shù)圖像平移原則,結合誘導公式,即可求解.【詳解】函數(shù)的圖象向右平移個單位長度得到.故選B.【點睛】本題考查三角圖像變換,誘導公式,熟記變換原則,準確計算是關鍵,是基礎題.4、B【解析】

利用古典概型概率公式求解即可.【詳解】設三件正品分別記為,一件次品記為則從三件正品、一件次品中隨機取出兩件,取出的產品可能為,共6種情況,其中取出的產品全是正品的有3種所以產品全是正品的概率故選:B【點睛】本題主要考查了利用古典概型概率公式計算概率,屬于基礎題.5、D【解析】

在正方形中連接,交于點,根據正方形的性質,在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點,在折疊圖,連接,因為,所以平面,所以,又因為,所以平面,又因為平面,所以平面,則是在平面上的射影,所以即為所求.因為故選:D【點睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.6、C【解析】

從裝有5個紅球和3個白球的口袋內任取3個球,不同的取球情況共有以下幾種:3個球全是紅球;2個紅球和1個白球;1個紅球2個白球;3個全是白球.選項A中,事件“都是紅球”是事件“至少有一個紅球”的子事件;選項B中,事件“至少有一個紅球”與事件“都是白球”是對立事件;選項D中,事件“至少有一個紅球”與事件“至少有一個白球”的事件為“2個紅球1個白球”與“1個紅球2個白球”;選項C中,事件“恰有一個紅球”與事件“恰有2個紅球”互斥不對立,故選C.7、A【解析】

觀察已知角與待求的角之間的特殊關系,運用余弦的二倍角公式和誘導公式求解.【詳解】令,則,所以,所以,故選A.【點睛】本題關鍵在于觀察出已知角與待求的角之間的特殊關系,屬于中檔題.8、C【解析】

本道題結合三視圖,還原直觀圖,結合直線與平面判定,即可?!驹斀狻拷Y合三視圖,還原直觀圖,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4對。故選C。【點睛】本道題考查了三視圖還原直觀圖,難度中等。9、B【解析】試題分析:線面垂直,則有該直線和平面內所有的直線都垂直,故B正確.考點:空間點線面位置關系.10、D【解析】

利用古典概型的概率公式可計算出所求事件的概率.【詳解】從袋中個球中任取一個球,取出的球恰好是一個紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【點睛】本題考查古典概型概率的計算,解題時要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進行計算,考查計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:,.考點:三角形的面積公式及余弦定理的變形.點評:由三角形的面積公式,再根據,直接可求出tanC的值,從而得到C.12、1【解析】

根據二次不等式和二次方程的關系,得到是方程的兩根,由根與系數(shù)的關系得到的值.【詳解】因為關于的不等式的解集為所以是方程的兩根,,由根與系數(shù)的關系得,解得【點睛】本題考查一元二次不等式和一元二次方程之間的關系,根與系數(shù)之間的關系,屬于簡單題.13、【解析】

得出的表達式,然后可計算出的表達式.【詳解】,,因此,.故答案為:.【點睛】本題考查數(shù)學歸納法的應用,考查項的變化,考查計算能力,屬于基礎題.14、【解析】

利用基本不等式可求得函數(shù)的最小值.【詳解】,由基本不等式得,當且僅當時,等號成立,因此,當時,函數(shù)的最小值是.故答案為:.【點睛】本題考查利用基本不等式求函數(shù)的最值,考查計算能力,屬于基礎題.15、或【解析】

根據題意可得圓心到直線的距離為,根據點到直線的距離公式列方程解出即可.【詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【點睛】本題主要考查了直線和圓相交的弦長公式,以及點到直線的距離公式,考查運算能力,屬于中檔題.16、32【解析】

根據面積關系建立方程關系,結合基本不等式1的代換進行求解即可.【詳解】如圖所示,則△ABC的面積為,即ac=2a+2c,得,得,當且僅當,即3c=a時取等號;∴的最小值為32.故答案為:32.【點睛】本題考查三角形中的幾何計算,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)輕度擁堵、中度擁堵、嚴重擁堵的路段的個數(shù)分別為6,9,3;(2)從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1;(3)【解析】

(1)根據在頻率分布直方圖中,小長方形的面積表示各組的頻率,可以求出頻率,再根據頻數(shù)等于頻率乘以樣本容量,求出頻數(shù);(2)根據(1)求出擁堵路段的個數(shù),求出每層之間的占有比例,然后求出每層的個數(shù);(3)先求出從(2)中抽取的6個路段中任取2個,有多少種可能情況,然后求出至少有1個路段為輕度擁堵有多少種可能情況,根據古典概型概率公式求出.【詳解】(1)由頻率分布直方圖得,這20個交通路段中,輕度擁堵的路段有(0.1+0.2)×1×20=6(個),中度擁堵的路段有(0.25+0.2)×1×20=9(個),嚴重擁堵的路段有(0.1+0.05)×1×20=3(個).(2)由(1)知,擁堵路段共有6+9+3=18(個),按分層抽樣,從18個路段抽取6個,則抽取的三個級別路段的個數(shù)分別為,,,即從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1.(3)記抽取的2個輕度擁堵路段為,,抽取的3個中度擁堵路段為,,,抽取的1個嚴重擁堵路段為,則從這6個路段中抽取2個路段的所有可能情況為:,共15種,其中至少有1個路段為輕度擁堵的情況為:,共9種.所以所抽取的2個路段中至少有1個路段為輕度擁堵的概率為.【點睛】本題考查了頻率直方圖的應用、分層抽樣、古典概型概率的求法.解決本題的關鍵是對頻率直方圖所表示的意義要了解,分層抽樣的原則要知道,要能識別古典概型.18、(I);(II)或.【解析】

(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計算出弦長.(II)先求得當時,取得最大值,根據兩直線垂直時斜率的關系,求得直線的方程,聯(lián)立直線的方程和圓的方程,求得點的坐標,由此求得直線的斜率,進而求得直線的方程.【詳解】(I)由圓O與圓C方程相減可知,相交弦PQ的方程為.點(0,0)到直線PQ的距離,(Ⅱ),.當時,取得最大值.此時,又則直線NC為.由,或當點時,,此時MN的方程為.當點時,,此時MN的方程為.∴MN的方程為或.【點睛】本小題主要考查圓與圓相交所得弦長的求法,考查三角形面積公式,考查直線與圓相交交點坐標的求法,考查直線方程的求法,考查兩直線垂直時斜率的關系,綜合性較強,屬于中檔題.19、(1)值域為[﹣3,1],最小正周期為π;(2).【解析】

(1)化簡f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得△ABC的面積S△ABC.【詳解】(1)f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,函數(shù)f(x)的值域為[﹣3,1]最小正周期為π;(2)∵f(A)=0,即sin(2A),∴A.在△ADB中,BD2=AD2+AB2﹣2AD?ABcosA?,解得ABcos,則sin∠ABC=cos.△ABC的面積S△ABC.【點睛】本題考查了三角恒等變形、三角形面積計算,考查余弦定理,意在考查計算能力,屬于中檔題.20、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)由平面,證得,再由為等邊三角形,得到,利用線面垂直的判定定理,即可證得平面;(Ⅱ)利用等體積法,即可求得點到平面的距離.【詳解】(Ⅰ)證明:在圓錐中,則平面,又因為平面,所以,因為,,所以,又,所以為等邊三角形,因為為中點,所以,又,所以平面;(Ⅱ)依題意,,因為為直徑,所以,又,所以,中,邊上的高為,的面積為,又,,則面積為,所以,解得.【點睛】本題主要考查了線面垂直的判定與證明,以及利用等體積法求解點面距,其中解答中熟練線面位置關系的判定定理,以及合理運用等體積法的運用是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(1)(2)見解析(3),【解析】

(1)利用列方程,并用二倍角公式進行化簡,求得或,進而求得集合.(2)由,得(且),化簡后根據的取值范圍,求得的取值范圍.(3)首先根據為偶函數(shù),求得當時,的解析式,從而求得當時,的解析式.依題意“當,恒成立”,化簡得到,根據函數(shù)解析式的求法,求得時,以及,進而求得函數(shù)在集合上的解析式.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論