2021-2022學年貴州省安順市中考數(shù)學適應性模擬試題含解析_第1頁
2021-2022學年貴州省安順市中考數(shù)學適應性模擬試題含解析_第2頁
2021-2022學年貴州省安順市中考數(shù)學適應性模擬試題含解析_第3頁
2021-2022學年貴州省安順市中考數(shù)學適應性模擬試題含解析_第4頁
2021-2022學年貴州省安順市中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022學年貴州省安順市中考數(shù)學適應性模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實數(shù)D.可能為負數(shù)2.據(jù)悉,超級磁力風力發(fā)電機可以大幅度提升風力發(fā)電效率,但其造價高昂,每座磁力風力發(fā)電機,其建造花費估計要5300萬美元,“5300萬”用科學記數(shù)法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1083.已知關于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或4.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣15.如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數(shù)關系的圖象是()A. B. C. D.6.若a=,則實數(shù)a在數(shù)軸上對應的點的大致位置是()A.點E B.點F C.點G D.點H7.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數(shù)是()A. B. C. D.8.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.9.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°10.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC=()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F(xiàn)兩點.若AC=,∠AEO=120°,則FC的長度為_____.12.函數(shù)的定義域是________.13.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.14.在一個不透明的袋子里裝有一個黑球和兩個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球,兩次都摸到黑球的概率是__________.15.計算:2(a-b)+3b=___________.16.已知一個正六邊形的邊心距為,則它的半徑為______.17.圖甲是小明設計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內(nèi)部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm三、解答題(共7小題,滿分69分)18.(10分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.19.(5分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項.要求每位被調(diào)查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負不完整的統(tǒng)計圖.請你根據(jù)以上信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有多少人?談談你的看法?20.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.21.(10分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.求反比例函數(shù)的解析式;若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.22.(10分)如圖,已知,,.求證:.23.(12分)在某校舉辦的2012年秋季運動會結(jié)束之后,學校需要為參加運動會的同學們發(fā)紀念品.小王負責到某商場買某種紀念品,該商場規(guī)定:一次性購買該紀念品200個以上可以按折扣價出售;購買200個以下(包括200個)只能按原價出售.小王若按照原計劃的數(shù)量購買紀念品,只能按原價付款,共需要1050元;若多買35個,則按折扣價付款,恰好共需1050元.設小王按原計劃購買紀念品x個.(1)求x的范圍;(2)如果按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同,那么小王原計劃購買多少個紀念品?24.(14分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

利用配方法,根據(jù)非負數(shù)的性質(zhì)即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故選:A.【點睛】本題考查配方法的應用,非負數(shù)的性質(zhì)等知識,解題的關鍵是熟練掌握配方法.2、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:5300萬=53000000=.故選C.【點睛】在把一個絕對值較大的數(shù)用科學記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).3、A【解析】

根據(jù)方程有兩個相等的實數(shù)根結(jié)合根的判別式即可得出關于k的方程,解之即可得出結(jié)論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關鍵.4、C【解析】

首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【點睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關鍵.5、B【解析】

△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數(shù)關系的圖象.【詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數(shù)關系的圖象是B;故選B.【點睛】本題考查了動點函數(shù)圖象問題,用到的知識點是三角形的面積、一次函數(shù),在圖象中應注意自變量的取值范圍.6、C【解析】

根據(jù)被開方數(shù)越大算術平方根越大,可得答案.【詳解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故選:C.【點睛】本題考查了實數(shù)與數(shù)軸,利用被開方數(shù)越大算術平方根越大得出3<<4是解題關鍵.7、B【解析】

連接OB,由切線的性質(zhì)可得,由鄰補角相等和四邊形的內(nèi)角和可得,再由圓周角定理求得,然后由平行線的性質(zhì)即可求得.【詳解】解,連結(jié)OB,∵、是的切線,∴,,則,∵四邊形APBO的內(nèi)角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質(zhì)、圓周角定理、平行線的性質(zhì)和四邊形的內(nèi)角和,解題的關鍵是靈活運用有關定理和性質(zhì)來分析解答.8、A【解析】

列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.9、C【解析】

首先求得AB與正東方向的夾角的度數(shù),即可求解.【詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【點睛】本題考查了方向角,正確理解方向角的定義是關鍵.10、B【解析】

先利用三角函數(shù)計算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關系可得到OC的長.【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點睛】本題考查了直線與圓的位置關系:設⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

先根據(jù)矩形的性質(zhì),推理得到OF=CF,再根據(jù)Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,

∴∠EDO=30°,∠DEO=60°,

∵四邊形ABCD是矩形,

∴∠OBF=∠OCF=30°,∠BFO=60°,

∴∠FOC=60°-30°=30°,

∴OF=CF,

又∵Rt△BOF中,BO=BD=AC=,

∴OF=tan30°×BO=1,

∴CF=1,

故答案為:1.【點睛】本題考查矩形的性質(zhì)以及解直角三角形的運用,解題關鍵是掌握:矩形的對角線相等且互相平分.12、x≥-1【解析】分析:根據(jù)二次根式的性質(zhì),被開方數(shù)大于或等于0,可以求出x的范圍.詳解:根據(jù)題意得:x+1≥0,解得:x≥﹣1.故答案為x≥﹣1.點睛:考查了函數(shù)的定義域,函數(shù)的定義域一般從三個方面考慮:(1)當函數(shù)表達式是整式時,定義域可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(1)當函數(shù)表達式是二次根式時,被開方數(shù)非負.13、【解析】試題分析:根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據(jù)勾股定理得:,由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網(wǎng)格型問題;2.勾股定理;3.三角形的面積.14、1【解析】

首先根據(jù)題意列表,由列表求得所有等可能的結(jié)果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結(jié)果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【點睛】考查概率的計算,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解題的關鍵.15、2a+b.【解析】

先去括號,再合并同類項即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.16、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構(gòu)造直角三角形并利用解直角三角形的知識求解.17、【解析】試題分析:根據(jù),EF=4可得:AB=和BC的長度,根據(jù)陰影部分的面積為54可得陰影部分三角形的高,然后根據(jù)菱形的性質(zhì)可以求出小菱形的邊長為,則菱形的周長為:×4=.考點:菱形的性質(zhì).三、解答題(共7小題,滿分69分)18、(3)a=,方程的另一根為;(2)答案見解析.【解析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3時,為一元一次方程;②當a≠3時,利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當a=3時,方程為2x=3,解得:x=3.②當a≠3時,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當a=2時,原方程為:x2+2x+3=3,解得:x3=x2=-3;當a=3時,原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當a=3,3,2時,方程僅有一個根,分別為3,3,-3.考點:3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應用.19、(1)補全圖形見解析;(2)B;(3)估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有75人,就該年級經(jīng)常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】

(1)根據(jù)被調(diào)查的總?cè)藬?shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級學生中“經(jīng)常隨手丟垃圾”的學生=總?cè)藬?shù)×C情況的比值.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有75人,就該年級經(jīng)常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【點睛】本題考查了眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關知識點.20、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標,得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點C(,-),從而得PB=3-=,PC=;再分情況討論:①當△AOD∽△BPC時,根據(jù)相似三角形性質(zhì)得,

解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點C也在此圓上,則MC=MB,根據(jù)兩點間的距離公式得一個關于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點A、B(點A在點B的左側(cè)),∴A(a,0),B(3,0),當x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當△AOD∽△BPC時,∴,即,

解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點M,∵D、B、O三點共圓,且BD為直徑,圓心為M(,a),若點C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當a=時,D、O、C、B四點共圓.【點睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點共圓等,綜合性較強,有一定的難度,正確進行分析,熟練應用相關知識是解題的關鍵.21、(1)y=;(2)1;【解析】

(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論