版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省廣州市第七中學(xué)2023-2024學(xué)年九年級(jí)下學(xué)期月考數(shù)
學(xué)試題
學(xué)校:.姓名:.班級(jí):考號(hào):
一、單選題
1.中國(guó)是最早采用正負(fù)數(shù)表示相反意義的量的國(guó)家.如果水位上升3m記作+3m,那
么水位下降2m記作()
A.+2mB.—2mC.+lmD.-Im
2.某幾何體的三視圖如圖所示,則該幾何體是(
A.三棱柱B.三棱錐C.四棱柱D.圓錐
3.下列運(yùn)算正確的是()
丫32
A.B.|2-73|=^-2C.(-2/=_8/D.a-aa6
4.如圖,點(diǎn)A、B、C在。上,AC//OB,=130°,則NBOC的度數(shù)為()
B.50°C.40°D.80°
5.如圖,在ABC中,點(diǎn)分別在",AC上,,且AZ):=2:3,則VADE
與,ABC的周長(zhǎng)比是()
A
4:9C.2:5D.4:25
6.“綠水青山就是金山銀山”.為了改造水質(zhì),某工程隊(duì)對(duì)2400平方公里的水域進(jìn)行水
質(zhì)凈化,實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了20%,結(jié)果提前了40天完成任
務(wù).設(shè)原計(jì)劃每天凈化的水域面積為X平方公里,則下列方程中正確的是()
A2400x(1+20%)2400_24002400
4QB.40
xx(l+20%)xx
C2400_2400x(1+20%)_24002400
D.40
xXx(l+20%)x
3%+y=6〃
7.已知關(guān)于工、y的方程組的解滿足x—y=i,貝|J〃二()
x+3y=2n—4
ABcD.
-1-4-42
8.二次函數(shù)>=以2+法的圖象如圖所示,則而_()
—2〃+/?C.—2a—bD.
9.如圖,A5是。的直徑,。。是。的弦,CD.LAB,垂足為E,連接5。并延長(zhǎng),
與過(guò)點(diǎn)A的切線AM相交于點(diǎn)P,連接AC.若O的半徑為5,AC=8,則尸。的長(zhǎng)是
().
35
A,B.10C.D.11
3T
點(diǎn)A在反比例函數(shù)y=9(x>0)的圖象
10.如圖,的直角頂點(diǎn)O為坐標(biāo)原點(diǎn),
X
上,點(diǎn)B在反比例函數(shù)y=:(x<0)的圖象上,NQ4B=30。,則上的值為()
試卷第2頁(yè),共6頁(yè)
C.-3D.-4
二、填空題
11.若同=8,貝!J〃=
1
12.若式子在實(shí)數(shù)范圍內(nèi)有意義,則%的取值范圍是
Jx+3
13.在反比例函數(shù)y=“口一1的圖象的每一支上,y都隨尤的增大而增大,且整式尤2+區(qū)+16
X
是完全平方式,則該反比例函數(shù)的解析式為
14.如圖,在平面直角坐標(biāo)系中,為等腰三角形,Q4=AB=5,點(diǎn)B到x軸的距
離為4,若將。鉆繞點(diǎn)。逆時(shí)針旋轉(zhuǎn)90。,得到△04?,則點(diǎn)8'的坐標(biāo)為
15.如圖,是一個(gè)圓錐的主視圖,/ABC的余弦值等于:,則該圓錐側(cè)面展開扇形的
圓心角的度數(shù)為.
16.如圖,在正方形ABCD中,點(diǎn)E為邊上的一個(gè)動(dòng)點(diǎn),連接AE,將"E沿AE
折疊得到△川汨,"交8。于點(diǎn)P.
當(dāng)44£=30。時(shí),ZAPD=
當(dāng)E為BC的中點(diǎn)時(shí),—=
三、解答題
x+l<2
17.解不等式組:
6-3x>0
18.如圖,/1=/2,/3=/4,求證:AC^AD.
⑴化簡(jiǎn)P;
(2)若關(guān)于尤的方程尤,+(。+1卜+萬(wàn)=0有兩個(gè)相等的實(shí)數(shù)根,求P的值.
20.某中學(xué)為了解學(xué)生“誦讀經(jīng)典”的情況,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生的閱讀量,
學(xué)校將閱讀量分成優(yōu)秀、良好、較好、一般四個(gè)等級(jí),繪制如下統(tǒng)計(jì)表:
等級(jí)一般較好良好優(yōu)秀
閱讀量/本3456
頻數(shù)12a144
頻率0.240.40b0.08
根據(jù)統(tǒng)計(jì)表中提供的信息,解答下列問(wèn)題:
(1)本次調(diào)查一共隨機(jī)抽取了名學(xué)生;
(2)求所抽查學(xué)生閱讀量的平均數(shù);
(3)樣本數(shù)據(jù)中優(yōu)秀等級(jí)學(xué)生有4人,其中只有1名男生,其余都是女生.現(xiàn)從中任選派
試卷第4頁(yè),共6頁(yè)
2名學(xué)生去參加讀書分享會(huì),請(qǐng)用樹狀圖法或列表法求所選2名同學(xué)中有男生的概率.
1k
2,?如圖‘已知正比例函數(shù)片亍的圖象與反比例函數(shù)片1的圖象交于人2兩點(diǎn),
⑴求k的值;
Ik
(2)結(jié)合圖象,直接寫出不等式:工〉人的解集;
3x
⑶點(diǎn)尸是y軸上一點(diǎn),連接,PB,若5寸的=24,求點(diǎn)尸的坐標(biāo).
22.如圖,在某大樓觀測(cè)點(diǎn)P處進(jìn)行觀測(cè),測(cè)得山坡A8上A處的俯角為15。,測(cè)得山
腳8處的俯角為60。.已知該山坡A8的坡度i=l:若,3”=10米,點(diǎn)、P,H,B,C,
A在同一個(gè)平面上,點(diǎn)X,B,C在同一條直線上,且
口
口P
口
口
口
口
口
HBC
(1)求觀測(cè)點(diǎn)尸與山腳8點(diǎn)之間的距離;
(2)求觀測(cè)點(diǎn)尸與山頂A點(diǎn)之間的距離.
23.如圖,48是(O的直徑,點(diǎn)C在。上.
(1)尺規(guī)作圖:在弦8c的右側(cè)作NBCD=NC4B,交A3的延長(zhǎng)線于點(diǎn)。;(保留作圖痕
跡,不寫作法)
⑵在(1)所作的圖中,
①求證:8是;O的切線;
②若BD=2OB,求tan/C鉆的值.
24.已知拋物線yn-r-Zx+ag〉。)與y軸相交于點(diǎn)A,頂點(diǎn)為M.
⑴求點(diǎn)A/的坐標(biāo);(用含。的式子表示)
(2)直線y=與直線M4相交于點(diǎn)N,與拋物線的對(duì)稱軸相交于點(diǎn)B.
①求二8M0的面積的取值范圍;
②直線y=;尤-。與y軸相交于點(diǎn)C,拋物線上是否存在點(diǎn)P,使得以尸、A、C、N為
頂點(diǎn)的四邊形是平行四邊形?若存在,求y=-/-2x+a在-時(shí)的取值范圍;
若不存在,請(qǐng)說(shuō)明理由.
25.如圖,在等邊ABC中,AB=6,點(diǎn)。在3C邊的延長(zhǎng)線上,將線段0c繞點(diǎn)。逆
時(shí)針旋轉(zhuǎn)120。得到線段DE,P為8E的中點(diǎn).
⑴求A到5C的距離;
(2)連接AP,PD,求NAPD的度數(shù);
(3)連接CP,求尸。+且CP的最小值.
3
試卷第6頁(yè),共6頁(yè)
參考答案:
1.B
【分析】
本題考查了正數(shù)和負(fù)數(shù),在一對(duì)具有相反意義的量中,先規(guī)定其中一個(gè)為正,則另一個(gè)就用
負(fù)表示,據(jù)此求解即可.
【詳解】解:如果水位上升3m記作+3m,那么水位下降2m記作-2m,
故選:B.
2.A
【分析】
本題主要考查由三視圖判斷幾何體.由主視圖和左視圖得出該幾何體是柱體,再結(jié)合俯視圖
可得答案.
【詳解】解:根據(jù)題意得:該幾何體是三棱柱.
故選:A
3.C
【分析】本題考查了整式的運(yùn)算,實(shí)數(shù)的運(yùn)算,解題的關(guān)鍵是掌握二次根式概念,絕對(duì)值和
整式的運(yùn)算法則.根據(jù)二次根式的概念、絕對(duì)值、同底數(shù)幕的乘法和暴的乘方逐一判斷即可.
【詳解】解:A、6正=后=5,故該選項(xiàng)錯(cuò)誤,不符合題意;
B、|2-6卜2-百,故該選項(xiàng)錯(cuò)誤,不符合題意;
C、(-2a2)3=(一2丫“6=_8a6,故該選項(xiàng)正確,符合題意;
D、°3./=蘇,故該選項(xiàng)錯(cuò)誤,不符合題意;
故選:C.
4.B
【分析】
本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這
條弧所對(duì)的圓心角的一半是解答此題的關(guān)鍵.
先根據(jù)三角形內(nèi)角和定理,04=03,得出4=25。,再由平行線的性質(zhì)得出ZB=ZCAB=25°,
根據(jù)圓周角定理即可得出結(jié)論.
【詳解】
解:OA=OB,ZAO8=130。,
答案第1頁(yè),共22頁(yè)
5A。-130。*
2
AC//OB,
ZB=ZCAB=25°,
:.ZBOC=2ZCAB=50a.(同弧所對(duì)的圓心角等于圓周角的2倍)
故選:B.
5.C
【分析】
本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.先求
出">:AB=2:5,再證出△ADESAMC,然后根據(jù)相似三角形的周長(zhǎng)比等于相似比即可
得.
【詳解】解::AO:D3=2:3,
AD,AB=2:5,
DE//BC,
AADE^AABC,
則VADE與ABC的周長(zhǎng)比等于AD:AB=2:5,
故選:C.
6.D
【分析】本題主要考查了分式方程的應(yīng)用.根據(jù)題意列出分式方程,即可得到結(jié)果;
【詳解】解::設(shè)原計(jì)劃每天凈化的水域面積為x平方公里,實(shí)際工作時(shí)每天的工作效率比
原計(jì)劃提高了20%,
實(shí)際工作時(shí)每天凈化的水域面積為(l+20%)x平方公里.
24002400
=40,
依題意,得:x_―(1+20%)%
故選:D.
7.C
【分析】
本題考查根據(jù)方程組的解的情況求參數(shù),根據(jù)x-y=l,得到X=y+1,將方程組轉(zhuǎn)化為未
知數(shù)為的方程組,進(jìn)行求解即可.
【詳解】解::x-y=i,
答案第2頁(yè),共22頁(yè)
x=y+l,
3
3(y+l)+y=6n2
???原方程組化為:
y+l+3y=2〃-4j_
n=-
2
故選C.
【分析】
本題考查了二次函數(shù)的性質(zhì),以及二次根式的化簡(jiǎn),根據(jù)二次函數(shù)圖象得到。<0,b-a>0,
再利用二次根式性質(zhì)化簡(jiǎn)病-J伍”)2,即可解題.
【詳解】解:由圖知,二次函數(shù)開口向下,
a<0,
對(duì)稱軸在y軸右側(cè),
;.b>0,
:.b—a>0,
貝!1-小(b-af=-a—(b-=—b>
故選:D.
9.A
【分析】
本題考查了切線的性質(zhì)、圓周角定理,垂徑定理、勾股定理、相似三角形的判定和性質(zhì).連
接AD,根據(jù)勾股定理可求出8。,證明qBZMs42MP,再根據(jù)相似三角形的性質(zhì)計(jì)算,即
可求得線段陽(yáng)的長(zhǎng).
【詳解】解:如圖,連接AD,
APM
是。的直徑,CDLAB,
:.CE=DE,
:.AD=AC=8,
答案第3頁(yè),共22頁(yè)
TAB是。的直徑,。的半徑為5,
AZADB=9Q°fAB=10f
BD=y/AB2-AD2=V102-82=6,
?「AM是圓。的切線,
ZADB=ZBAP=90°f
,:ZB=ZB,
:?一BDAS-BAP,
,BDBA
??BA~BP9
即9」
10BP
解得:BP=y
5032
PD=BP-BD=--6=—
33
故選:A
10.B
【分析】
本題考查反比例函數(shù)的圖象和性質(zhì),相似三角形的判定與性質(zhì),作x軸于點(diǎn)M,
期,彳軸于點(diǎn)雙,先證“MBOs推出泮^=(等):tanNOAB=g^=立,由反比
SNOA。4OA3
例函數(shù)的圖象和性質(zhì)可得S.M=goMMl=3,進(jìn)而求出S“BO,即可得出人的值.解題的關(guān)
鍵是理解反比例函數(shù)比例系數(shù)上的幾何意義.
【詳解】
解:如圖,作3M_Lx軸于點(diǎn)Af,AN_Lx軸于點(diǎn)N,
則ZBMO=ZONA=90°,
ZMBO+ZBOM=90°,
答案第4頁(yè),共22頁(yè)
RtAAOB中ZBOA=90°,
:.ZAON+ZBOM=90°f
:.ZMBO=ZNOAf
.-.AMBO^ANOA,
,S(°B2
?-5MB0-=(市)'
。.NOAUA
Z(MB=30°,
「?tanZOAB=—,
OA3
.SMBO_(73、2_J_
?,飛"3'
uNOAJJ
點(diǎn)A在反比例函數(shù)y=9(x>0)的圖象上,
X
???S.N°A=;ON.NA=3,
,,*SMBO=§x3=l,
k
點(diǎn)8在反比例函數(shù)>=—(尤<0)的圖象上,
x
k=-2SMBO=-2xl=-2,
故選:B.
11.±8
【分析】
本題考查絕對(duì)值的性質(zhì),非負(fù)數(shù)的絕對(duì)值是它本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù).
【詳解】解:???時(shí)=8,
〃=±8.
故答案為:±8.
12.x>-3
【分析】
此題主要考查了二次根式有意義的條件以及分式有意義的條件.根據(jù)二次根式有意義的條件
以及分式有意義的條件,即可求解.
【詳解】解:根據(jù)題意得:x+3"且X+3H0,
/.x>—3.
故答案為:x>-3
答案第5頁(yè),共22頁(yè)
【分析】
本題考查反比例函數(shù)的圖象與性質(zhì)、完全平方式,先根據(jù)反比例函數(shù)的性質(zhì)得到左<1,再
根據(jù)完全平方式的特點(diǎn)求得左=±8,進(jìn)而求得%即可求解,熟知完全平方式的結(jié)構(gòu)是解答的
關(guān)鍵.
【詳解】
解::在反比例函數(shù)y=的圖象的每一支上,y都隨尤的增大而增大,
X
***k-l<01
/.k<\
;整式/+區(qū)+16是完全平方式,
—k=土2x4=±8
左=±8
':k<l
左=—8
.??該反比例函數(shù)的解析式為y=-‘;
X
9
故答案為:y=--.
X
14.?8)
【分析】過(guò)B作3C_LQ4于C,過(guò)皆作軸于。,構(gòu)建=A03C,即可得出答
案.
【詳解】過(guò)B作BCJLQ4于C,過(guò)8'作軸于。,
答案第6頁(yè),共22頁(yè)
/B'DO=ZBCO=90。,
/?Z2+Z3=90,
由旋轉(zhuǎn)可知ZBOB'=90°,OB=OB,
Zl+Z2=90°,
Z1=Z3,
VOB=OB,Z1=Z3,ZB'DO^ZBCO,
:.AOB'D-OBC,
:.B'D=OC,OD=BC=4,
":AB=AO=5,
?*-AC=ylAB2-BC2=^52-42=3,
,OC=8,
:.B'D=8,
故答案為:(-4,8).
【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及如何構(gòu)造全等三角形求得線段的長(zhǎng)度,準(zhǔn)確構(gòu)造全等三
角形求得線段長(zhǎng)度是解題的關(guān)鍵.
15.120°/120度
【分析】本題考查了圓錐的計(jì)算,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底
面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).設(shè)圓錐的底面半徑8。為則圓錐的母線長(zhǎng)為
AB=3a,設(shè)圓錐側(cè)面展開扇形的圓心角為廢,根據(jù)圓錐側(cè)面積公式列方程解出即可.
【詳解】解:作AD13C,垂足為。,
由題意得AB=AC,則3Z)=CD,
]BD
在Rt/\/47?/?中,cosNA3c=—=----,
3AB
設(shè)圓錐的底面半徑為。,
答案第7頁(yè),共22頁(yè)
;?圓錐的母線長(zhǎng)為AB=3a,
設(shè)圓錐側(cè)面展開扇形的圓心角為"。,
??7i-a-3a=——-—―,
360
解得n—120.
即圓錐的側(cè)面展開圖中扇形的圓心角為120。.
故答案為120。.
3
16.1050/105度-/0.75
【分析】
當(dāng)?shù)摹?30。時(shí),由正方形的性質(zhì)得到N&m=90。,NADB=45。,由折疊的性質(zhì)可得
ZFAE=ZBAE=30P,則可得ZDAP=30°,再利用三角形內(nèi)角和定理即可求出
ZAPD=180°-ZADP-/DAP=105°;
當(dāng)E為BC的中點(diǎn)時(shí),取AE中點(diǎn)T,連接3T,過(guò)點(diǎn)B作BGLAE于G,過(guò)點(diǎn)P作尸
于H,設(shè)AB=8C=20,則骸=10,利用勾股定理求出AE=10/,則AT=£T=56,證
明△AEBSABEG,求出EG=2/BG=4非,則TG=3?,證明NBAT=NABT,進(jìn)而
PHA
證明得至|J一=一=_,設(shè)尸》=4毋AH=3x,證明△PBH是等腰直角
AHTG3
DPAH3
三角形,得至1」皿=9=4》,再證明P”〃&D,即可得到——=—=:.
BPBH4
【詳解】解::四邊形ABCD是正方形,
ZBAD=90°,ZADB=45°,
當(dāng)ZBAE=30。時(shí),由折疊的性質(zhì)可得NE4E=ZS4E=30。,
ZDAP=90°-ZFAE-ZBAE=30°,
ZAPD=180°-ZADP-ZDAP=105°;
如圖所示,取AE中點(diǎn)T,連接BT,過(guò)點(diǎn)B作BGLAE于G,過(guò)點(diǎn)P作尸X,AB于H,設(shè)
AS=3C=20,]OE=10,
AE=yjAB2+BE2=1075,
AT=ET=5y[5,
':/ABE=ZBGE=90°,ZAEB=/BEG,
AAEBsABEG,
答案第8頁(yè),共22頁(yè)
.EGBGBEanEGBG10
99BE~AB~AE'1020IOA/5'
EG=2/BG=4百,
TG=3/,
由折疊的性質(zhì)可得=
ZBAP=2ZBAE,
?:AT=BT,
JZBAT=ZABT,
:.ZBTG=ZBAT+/ABT=2ZBAT=/BAP,
又*;/AHP=NTGB,
:.AAHP^ATGB,
.PHBG_4
AW-7U-3
設(shè)PH=4x,AH=3x,
:NPBH=45。,
??是等腰直角三角形,
*.BH=PH=4x,
:ZBAD=ZBHP=90°,
??PH//AD,
DPAH_3
———,
BPBH4
3
故答案為:105。;
4
BEC
【點(diǎn)睛】本題主要考查了正方形與折疊問(wèn)題,勾股定理,相似三角形的性質(zhì)與判定,平行線
分線段成比例定理,等邊對(duì)等角等等,正確作出輔助線構(gòu)造相似三角形是解題的關(guān)鍵.
17.x<l
答案第9頁(yè),共22頁(yè)
【分析】
本題主要考查的是解一元一次不等式組,先求出每個(gè)不等式的解集,再根據(jù)口訣:同大取大,
同小取小,大小小大中間找,大大小小無(wú)解了,確定不等式組的解集.
【詳解】
x+142①
解:
6-3尤>0②
由①得:X<1
由②得:—3x>-6,解得:x<2
.??不等式組的解集為xVI
18.詳見解析
【分析】
本題主要考查了三角形全等的判定和性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的判定方法,
ASA,ASA,SSS,SAS,HL.證明ABC當(dāng)ARD(ASA),得出答案即可.
【詳解】
證明:Z3=Z4,
ZABC^ZABD,
Z1=Z2
在,ABC與AABD中{AB=AB
ZABC=ZABD
:..ABC^ABD(ASA),
:.AC^AD.
19.(1)^—
a+1
Q)P=土逅
2
答案第10頁(yè),共22頁(yè)
【分析】
本題考查了分式化簡(jiǎn),一元二次方程根的判別式;
(1)先對(duì)括號(hào)內(nèi)進(jìn)行通分運(yùn)算,同時(shí)對(duì)分子、分母進(jìn)行因式分解,再將除轉(zhuǎn)化為乘,進(jìn)行
約分,結(jié)果化為最簡(jiǎn)分式或整式,即可求解;
(2)由根的判別式得(。+1)-4xlx]=。,求出。,代入尸,即可求解;
掌握分式化簡(jiǎn)的步驟,一元二次方程根的判別式:“A>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;
△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;A<0時(shí),方程有無(wú)的實(shí)數(shù)根;”是解題的關(guān)鍵.
3(。+1)
【詳解】(1)解:
(a+l)(a—1)
_a-13(a+l)
Q+1+—1)
3
a+i'
(2)
解:方程有兩個(gè)相等的實(shí)數(shù)根,
??\=b1-4-ac=0,
3
二.(a+1)9-4xlx-=0,
解得:a=±^6—1,
當(dāng)"二"T時(shí)'0二后石=*'
當(dāng)時(shí)'/,=V6^T7T="T,
.?.尸=±逅
2
20.(1)50
(2)所抽查學(xué)生閱讀量的平均數(shù)是4.2
⑶3
【分析】
答案第11頁(yè),共22頁(yè)
(1)由一般的頻數(shù)和頻率,求本次調(diào)查的總?cè)藬?shù);
(2)由平均數(shù)的定義即可得出答案;
(3)畫樹狀圖,共有12種情況,其中所選2名同學(xué)中有男生的有6種結(jié)果,再由概率公式
即可得出答案.
【詳解】(1)解:本次抽取的學(xué)生共有:12+0.24=50(名)
(2)解::“=50x0.40=20,
平均數(shù)為:^x(3xl2+4x20+5xl4+6x4)=4.2.
(3)
解:畫樹狀圖如下:
開始
女女女為
小
女女男女/N女男女/N女見女/N女女
共有12種情況,其中所選2名同學(xué)中有男生的有6種結(jié)果,
???所選2名同學(xué)中有男生的概率為4=j.
【點(diǎn)睛】
此題考查的是用樹狀圖法求概率以及頻數(shù)分布表、平均數(shù)等知識(shí).樹狀圖法可以不重復(fù)不遺
漏的列出所有可能的結(jié)果,適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回試驗(yàn)
還是不放回試驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
21.⑴左=12
(2)-6<x<0或無(wú)>6
⑶尸(0,4)或尸(0,-4)
【分析】
本題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,解題時(shí)注意:反比例函數(shù)與一次函數(shù)的
圖象的交點(diǎn)坐標(biāo)滿足兩函數(shù)的解析式.
(1)把A的橫坐標(biāo)為6代入y=可得點(diǎn)A的坐標(biāo),再根據(jù)待定系數(shù)法,即可得到反比
例函數(shù)的表達(dá)式;
答案第12頁(yè),共22頁(yè)
1k
(2)依據(jù)函數(shù)圖象,即可得到不等式:;x>—的解集;
3x
(3)設(shè)P(O,p),依據(jù)S△皿=24,列方程求解即可得到點(diǎn)尸的坐標(biāo).
【詳解】(1)
1/c
%=§x6=2,
4(6,2),
:.k=12
(2)
:點(diǎn)A與點(diǎn)B是關(guān)于原點(diǎn)成中心對(duì)稱
?*.3(—6,—2),
,不等式的解集為:一6<x<0或無(wú)>6
⑶
設(shè)P(O,p),依題意得:!xl2x|p|=24\p\=4p=±4
???P(0,4)或P(O,T)
22.(1)觀測(cè)點(diǎn)尸與山腳B點(diǎn)之間的距離是20米
⑵觀測(cè)點(diǎn)P與山頂點(diǎn)A之間的距離是2072米
【分析】
本題主要考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是熟練掌握三角函數(shù)的定義,數(shù)形結(jié)合.
族=-^--迪=20
(1)先求出ZEPB=ZPBH=60。,根據(jù)三角函數(shù)求出sin60。一扣(米)即可;
~T
(2)過(guò)點(diǎn)A作AD13C,交8C的延長(zhǎng)線于點(diǎn)D,先求出ZABD=30°,得出
答案第13頁(yè),共22頁(yè)
BP_20a。石
/尸54=180。-NABr>-NPB〃=90。,根據(jù)三角函數(shù)求出cos450點(diǎn)~即可得出
V
答案.
【詳解】(1)
解:如圖E
Pm
HBC
VZEPB=60°,PE//CH,
:.ZEPB=ZPBH=60°,
":PHLHC,
ZPHC=90。,
在RtBPH中,BH=10,
BP—^--^=20
..sin60°3(米),
~2
觀測(cè)點(diǎn)P與山腳B點(diǎn)之間的距離是20米.
(2)
解:如圖,過(guò)點(diǎn)A作AD13C,交BC的延長(zhǎng)線于點(diǎn)Q,
mP
o
oA
n
HBCD
':ZEPA=15°,Z.EPB=60°,
ZAPS=NEPB-ZEPA=45°,
..,山坡AB的坡度i=l:0,
.AD1=y/3
在RtABP中,tanZABD=—=^,
BD3
答案第14頁(yè),共22頁(yè)
:.ZABD=30°f
:.ZPBA=180°-ZABD-ZPBH=90°,
在RtAftP中,依=20米,
?AP=取=半=2。6
cos45°y/2(米),
~T
???觀測(cè)點(diǎn)P與山頂點(diǎn)A之間的距離是20近米.
23.(1)詳見解析
(2)①詳見解析;②變
2
【分析】(1)根據(jù)作已知角的等角的方法作圖即可;
(2)①連接OC,根據(jù)圓的性質(zhì)可得/C4O=NACO,NACB=90。,結(jié)合=
即可證明;②設(shè)QB=a,則8。=2a,=OC=a,AD=4°,根據(jù)勾股定理求出CD=26a,
由/5DC=/Ar)C,ZBCD=ZCAD,可證明即Cs?CDA,根據(jù)相似三角形的性質(zhì)即可
求解.
【詳解】(1)如圖所示,48為所求.
???ZCAO=ZACO,
ZCAO=ZBCD,
■.ZACO=NBCD
A2是。的直徑
ZACB^90°,
ZACO+ZOCB=Z.BCD+Z.OCB=90°
答案第15頁(yè),共22頁(yè)
即OCA.CD,
8是Q的切線
②設(shè)OB=a,則BD=2a,OA=OC=a,AD—4a,
在RtAOCD中,CD=yJOD2-OC2=J(3a)2-a2=1-Jla,
/BDC=ZADC,Z.BCD=Z.CAD,
BDCs,CDA,
,BCCD2缶百
ACAD4〃2
...在RtaABC中,tanZCAB=—=^.
AC2
【點(diǎn)睛】本題考查了圓的相關(guān)性質(zhì),解直角三角形,相似三角形的判定與性質(zhì),基本作圖,
解題的關(guān)鍵是靈活運(yùn)用這些知識(shí)解題.
24.⑴J仁4a迫
(2)?5>|;②一24或一
4oooo
【分析】
本題考查了二次函數(shù)與一次函數(shù)的綜合問(wèn)題,二次函數(shù)與特殊四邊形問(wèn)題等知識(shí)點(diǎn),掌握函
數(shù)的性質(zhì)是解題關(guān)鍵.
(1)將拋物線的一般式寫成頂點(diǎn)式即可求解;
(2)①作于點(diǎn)。,求出直線M4的解析式,根據(jù)1^^^二^加必加即可求解;
②分類討論當(dāng)點(diǎn)P在〉軸左側(cè)時(shí),當(dāng)點(diǎn)P在y軸右側(cè)時(shí),兩種情況即可求解;
【詳解】(1)
施軍:,**y=—(%2+2x)+a=—(%?+2x+1—1)+〃=—(%+1)+1+々,
M(—1,1+;
(2)
解:①作ND,處于點(diǎn)。,
答案第16頁(yè),共22頁(yè)
當(dāng)x=0時(shí),y=a,
:.A(O,a),
設(shè)直線MA的解析式為y=kx+b,把A(O,a)、M(—1,1+a)代入得,
[b=a
[—k+Z?=1+a
\k=-1
解得,,
[b=a
:.直線MA的解析式為y=-x+a
y=-x+a
聯(lián)立方程組得,1,
y=-x-a
12
4a
x=一
3
解得,
a
y=——
I3
當(dāng)%=_;一%
1,———,
'-sMBN=-MB-ND=^a+3
*.*tz>0,
?<4/3丫_3
??S>—x———,
3⑷4
3
即S>J
4
答案第17頁(yè),共22頁(yè)
②如圖,當(dāng)點(diǎn)尸在y軸左側(cè)時(shí),
當(dāng)x=o時(shí),y=-a,
.C(0,-a)
?/四邊形APCN是平行四邊形,
AC與PN互相平分,
.?.1;
將點(diǎn)P的坐標(biāo)代入y=-/一2x+a得,
a168
———-----6Z2H-a+a,
393
解得〃¥或。=。(不合,舍去),
O
、1,15,/八223
當(dāng)〃=不n時(shí),y=_(%+i)+k,
oO
,,一,9
當(dāng)%=1時(shí),y取得取小值-三,
O
,9//23
..——<y<一;
88
②當(dāng)點(diǎn)P在y軸右側(cè)時(shí),
:四邊形ACPN是平行四邊形,
NP//ACNP=AC,
???喈,-
,A(0,a),C(O,—aj,
4a7a
:.P'
33
7〃--a2--a+a,解得Q=°或a=0(舍),
將點(diǎn)P的坐標(biāo)代入,=一%2-2%+。得,
3938
j__7
???P
2,-8
ao11
當(dāng)q=g時(shí),y=-(x+iy+—
oo
當(dāng)x=l時(shí),y取得最小值一421,
o
2111
?——<y<—
88
答案第18頁(yè),共22頁(yè)
25.⑴3若
⑵/APD=90。
(3)尸。+且CP的最小值是回
3
【分析】(1)如圖所示,過(guò)點(diǎn)A作于H,利用等邊三角形的性質(zhì)和勾股定理求出
AH=3K,則A至IJBC的距離為3K;
(2)以AD為邊在AD左側(cè)作等邊三角形ADE,連接BF,EP,先證明*AB尸絲.ACD(SAS),
得至?。軳ABF=NACO=120。,BF=CD=DE,進(jìn)而得到尸=60。,證明3尸DE,得
到NPBF=ZE,進(jìn)而證明BFP瑪EDP(SAS),得到EP=OP,則由三線合一定理可得
AP1DF,則/AP£>=90。;
(3)由(2)可知,AP=A/3PD,則CP+J^PD=CP+AP,如圖3,作AF13C于尸,連
接FP,證明,AEPSAC。,得至IJNAFP=NACD=12O。,則/DEP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東經(jīng)貿(mào)職業(yè)學(xué)院《飛機(jī)維修手冊(cè)》2023-2024學(xué)年第一學(xué)期期末試卷
- 快速閥課程設(shè)計(jì)
- 土木工程課程設(shè)計(jì)月報(bào)
- 基礎(chǔ)漫畫課程設(shè)計(jì)教案
- 建筑課程設(shè)計(jì)引言
- 工程項(xiàng)目進(jìn)度更新與進(jìn)度偏差分析考核試卷
- 幼兒園美術(shù)領(lǐng)域課程設(shè)計(jì)
- 收費(fèi)社群養(yǎng)生課程設(shè)計(jì)
- 彩燈課程設(shè)計(jì)摘要
- 優(yōu)化調(diào)度課程設(shè)計(jì)
- 國(guó)開《資源與運(yùn)營(yíng)管理-0030》期末機(jī)考【答案】
- 道路運(yùn)輸從業(yè)人員崗前培訓(xùn)
- 行政復(fù)議意見書
- 公交行業(yè)項(xiàng)目計(jì)劃書模板
- 2024年度工作計(jì)劃供應(yīng)鏈
- 2020年FRM二級(jí)教材book3:Credit Risk Measurement and Management(信用風(fēng)險(xiǎn)計(jì)量和管理)
- 京劇社活動(dòng)管理制度
- 載荷試驗(yàn)-課件
- 《生產(chǎn)安全事故報(bào)告和調(diào)查處理?xiàng)l例》知識(shí)考題及答案
- 初中道德與法治學(xué)習(xí)方法指導(dǎo)課件
- 2024年江西電力職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及答案解析word版
評(píng)論
0/150
提交評(píng)論