2022屆遼寧省營口市大石橋市水源九一貫制校中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
2022屆遼寧省營口市大石橋市水源九一貫制校中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
2022屆遼寧省營口市大石橋市水源九一貫制校中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
2022屆遼寧省營口市大石橋市水源九一貫制校中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
2022屆遼寧省營口市大石橋市水源九一貫制校中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022屆遼寧省營口市大石橋市水源九一貫制校中考聯(lián)考數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同.設(shè)原計劃平均每天生產(chǎn)x臺機器,根據(jù)題意,下面所列方程正確的是()A.= B.=C.= D.=2.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數(shù)為()A.34° B.56° C.66° D.146°3.的值是A.±3 B.3 C.9 D.814.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標(biāo)為 B.圖像的對稱軸在軸的右側(cè)C.當(dāng)時,的值隨值的增大而減小 D.的最小值為-35.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.166.我國古代《易經(jīng)》一書中記載,遠(yuǎn)古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結(jié),滿七進(jìn)一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是()A.84 B.336 C.510 D.13267.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.8.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°9.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:110.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF11.下列各數(shù):1.414,,﹣,0,其中是無理數(shù)的為()A.1.414 B. C.﹣ D.012.估計的運算結(jié)果應(yīng)在哪個兩個連續(xù)自然數(shù)之間()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.14.學(xué)校乒乓球社團(tuán)有4名男隊員和3名女隊員,要從這7名隊員中隨機抽取一男一女組成一隊混合雙打組合,可組成不同的組合共有_____對.15.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,那么的值等于________.(結(jié)果保留兩位小數(shù))16.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.17.月球的半徑約為1738000米,1738000這個數(shù)用科學(xué)記數(shù)法表示為___________.18.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當(dāng)天南部地區(qū)比北部地區(qū)的平均氣溫高_(dá)____℃.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)20.(6分)已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數(shù)的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數(shù)的解析式;(1)求三角形CDE的面積.21.(6分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進(jìn)而得出:DC+AD=BD.(2)探究證明將直線MN繞點A順時針旋轉(zhuǎn)到圖2的位置寫出此時線段DC,AD,BD之間的數(shù)量關(guān)系,并證明(3)拓展延伸在直線MN繞點A旋轉(zhuǎn)的過程中,當(dāng)△ABD面積取得最大值時,若CD長為1,請直接寫B(tài)D的長.22.(8分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.(1)求證:∠G=∠CEF;(2)求證:EG是⊙O的切線;(3)延長AB交GE的延長線于點M,若tanG=,AH=3,求EM的值.23.(8分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)之間的函數(shù)圖象如下圖所示.求甲組加工零件的數(shù)量y與時間x之間的函數(shù)關(guān)系式.求乙組加工零件總量a的值.24.(10分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當(dāng)點E在邊BC上時,求證DE=EB;如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;如圖1,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.25.(10分)如圖,矩形ABCD中,點P是線段AD上一動點,O為BD的中點,PO的延長線交BC于Q.(1)求證:OP=OQ;(2)若AD=8厘米,AB=6厘米,P從點A出發(fā),以1厘米/秒的速度向D運動(不與D重合).設(shè)點P運動時間為t秒,請用t表示PD的長;并求t為何值時,四邊形PBQD是菱形.26.(12分)為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)27.(12分)如圖在由邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中,已知點A,B,C,D均為網(wǎng)格線的交點在網(wǎng)格中將△ABC繞點D順時針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)后的圖形△A1B1C1;在網(wǎng)格中將△ABC放大2倍得到△DEF,使A與D為對應(yīng)點.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

設(shè)原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,根據(jù)題意可得:現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同,據(jù)此列方程即可.【詳解】設(shè)原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,由題意得:.故選B.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程.2、B【解析】分析:先根據(jù)平行線的性質(zhì)得出∠2+∠BAD=180°,再根據(jù)垂直的定義求出∠2的度數(shù).詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質(zhì),解題的關(guān)鍵是掌握兩直線平行,同旁內(nèi)角互補,此題難度不大.3、C【解析】試題解析:∵∴的值是3故選C.4、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當(dāng)x<-1時,y隨x的增大而減小,故選項C錯誤,當(dāng)x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.5、D【解析】試題分析:設(shè)AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應(yīng)用;2.切線的性質(zhì).6、C【解析】由題意滿七進(jìn)一,可得該圖示為七進(jìn)制數(shù),化為十進(jìn)制數(shù)為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數(shù)的方法,注意運用七進(jìn)制轉(zhuǎn)化為十進(jìn)制,考查運算能力,屬于基礎(chǔ)題.7、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵M(jìn)N∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.8、C【解析】

根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計算公式:扇形的面積=.9、B【解析】

根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質(zhì)求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質(zhì).10、C【解析】

根據(jù)全等三角形的判定與性質(zhì),可得∠ACB=∠DBE的關(guān)系,根據(jù)三角形外角的性質(zhì),可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點睛】.本題主要考查全等三角形的判定與性質(zhì),熟悉掌握是關(guān)鍵.11、B【解析】試題分析:根據(jù)無理數(shù)的定義可得是無理數(shù).故答案選B.考點:無理數(shù)的定義.12、C【解析】根據(jù)二次根式的性質(zhì),可化簡得=﹣3=﹣2,然后根據(jù)二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之間.故選C.點睛:此題主要考查了二次根式的化簡和估算,關(guān)鍵是根據(jù)二次根式的性質(zhì)化簡計算,再二次根式的估算方法求解.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質(zhì),勾股定理的應(yīng)用等知識;綜合性比較強.14、1【解析】

利用樹狀圖展示所有1種等可能的結(jié)果數(shù).【詳解】解:畫樹狀圖為:

共有1種等可能的結(jié)果數(shù).

故答案為1.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.15、3.1【解析】分析:由題意可知:BC的長就是⊙O的周長,列式即可得出結(jié)論.詳解:∵以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,∴BC的長就是⊙O的周長,∴π?AB=BC,∴=π≈3.1.故答案為3.1.點睛:本題考查了圓的周長以及線段的比.解題的關(guān)鍵是弄懂BC的長就是⊙O的周長.16、【解析】

連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點睛】本題考查了扇形的面積計算以及全等三角形的判定與性質(zhì)等知識,根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.17、1.738×1【解析】

解:將1738000用科學(xué)記數(shù)法表示為1.738×1.故答案為1.738×1.【點睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù),掌握科學(xué)計數(shù)法的計數(shù)形式,難度不大.18、3【解析】

用南部氣溫減北部的氣溫,根據(jù)“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當(dāng)天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.【點睛】本題考查了有理數(shù)的減法運算法則,減法運算法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;

應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,

∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.

∵∠A=∠F,

∴∠BCD=∠ECG.

∴∠BCD-∠ECD=∠ECG-∠ECD,

即∠BCE=∠DCG.

在△BCE和△DCG中,∴△BCE≌△DCG(SAS),

∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,

∴AD∥BC,

∵BE=DG,

∴S△ABE+S△CDE=S△BEC=S△CDG=8,

∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.20、(1);(1)11.【解析】

(1)根據(jù)正切的定義求出OA,證明△BAO∽△BEC,根據(jù)相似三角形的性質(zhì)計算;(1)求出直線AB的解析式,解方程組求出點D的坐標(biāo),根據(jù)三角形CDE的面積=三角形CBE的面積+三角形BED的面積計算即可.【詳解】解:(1)∵tan∠ABO=,OB=4,∴OA=1,∵OE=1,∴BE=6,∵AO∥CE,∴△BAO∽△BEC,∴=,即=,解得,CE=3,即點C的坐標(biāo)為(﹣1,3),∴反比例函數(shù)的解析式為:;(1)設(shè)直線AB的解析式為:y=kx+b,則,解得,,則直線AB的解析式為:,,解得,,,∴當(dāng)D的坐標(biāo)為(6,1),∴三角形CDE的面積=三角形CBE的面積+三角形BED的面積=×6×3+×6×1=11.【點睛】此題考查的是反比例函數(shù)與一次函數(shù)的交點問題,掌握待定系數(shù)法求函數(shù)解析式的一般步驟、求反比例函數(shù)與一次函數(shù)的交點的方法是解題的關(guān)鍵.21、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】

(1)根據(jù)全等三角形的性質(zhì)求出DC,AD,BD之間的數(shù)量關(guān)系(2)過點B作BE⊥BD,交MN于點E.AD交BC于O,證明,得到,,根據(jù)為等腰直角三角形,得到,再根據(jù),即可解出答案.(3)根據(jù)A、B、C、D四點共圓,得到當(dāng)點D在線段AB的垂直平分線上且在AB的右側(cè)時,△ABD的面積最大.在DA上截取一點H,使得CD=DH=1,則易證,由即可得出答案.【詳解】解:(1)如圖1中,由題意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案為.(2).證明:如圖,過點B作BE⊥BD,交MN于點E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴為等腰直角三角形,.∵,∴.(3)如圖3中,易知A、B、C、D四點共圓,當(dāng)點D在線段AB的垂直平分線上且在AB的右側(cè)時,△ABD的面積最大.此時DG⊥AB,DB=DA,在DA上截取一點H,使得CD=DH=1,則易證,∴.【點睛】本題主要考查全等三角形的性質(zhì),等腰直角三角形的性質(zhì)以及圖形的應(yīng)用,正確作輔助線和熟悉圖形特性是解題的關(guān)鍵.22、(1)證明見解析;(2)證明見解析;(3).【解析】試題分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可證明;(2)欲證明EG是⊙O的切線只要證明EG⊥OE即可;(3)連接OC.設(shè)⊙O的半徑為r.在Rt△OCH中,利用勾股定理求出r,證明△AHC∽△MEO,可得,由此即可解決問題;試題解析:(1)證明:如圖1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)證明:如圖2中,連接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切線.(3)解:如圖3中,連接OC.設(shè)⊙O的半徑為r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.點睛:本題考查圓綜合題、垂徑定理、相似三角形的判定和性質(zhì)、銳角三角函數(shù)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題,正確尋找相似三角形,構(gòu)建方程解決問題嗎,屬于中考壓軸題.23、(1)y=60x;(2)300【解析】

(1)由題圖可知,甲組的y是x的正比例函數(shù).設(shè)甲組加工的零件數(shù)量y與時間x的函數(shù)關(guān)系式為y=kx.根據(jù)題意,得6k=360,解得k=60.所以,甲組加工的零件數(shù)量y與時間x之間的關(guān)系式為y=60x.(2)當(dāng)x=2時,y=100.因為更換設(shè)備后,乙組工作效率是原來的2倍.所以,解得a=300.24、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論