湖北恩施龍鳳民族初級中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第1頁
湖北恩施龍鳳民族初級中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第2頁
湖北恩施龍鳳民族初級中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第3頁
湖北恩施龍鳳民族初級中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第4頁
湖北恩施龍鳳民族初級中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北恩施龍鳳民族初級中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.2.某校體育節(jié)有13名同學(xué)參加女子百米賽跑,它們預(yù)賽的成績各不相同,取前6名參加決賽.小穎已經(jīng)知道了自己的成績,她想知道自己能否進(jìn)入決賽,還需要知道這13名同學(xué)成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)3.對于有理數(shù)x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.114.如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標(biāo)為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)5.下列運算錯誤的是()A.(m2)3=m6B.a(chǎn)10÷a9=aC.x3?x5=x8D.a(chǎn)4+a3=a76.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<37.某學(xué)校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學(xué)校隨機(jī)抽取若干同學(xué)參加比賽,成績被制成不完整的統(tǒng)計表如下.成績?nèi)藬?shù)(頻數(shù))百分比(頻率)050.2105150.42050.1根據(jù)表中已有的信息,下列結(jié)論正確的是()A.共有40名同學(xué)參加知識競賽B.抽到的同學(xué)參加知識競賽的平均成績?yōu)?0分C.已知該校共有800名學(xué)生,若都參加競賽,得0分的估計有100人D.抽到同學(xué)參加知識競賽成績的中位數(shù)為15分8.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優(yōu)弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°9.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體10.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數(shù)最少是()A.4 B.5 C.6 D.7二、填空題(本大題共6個小題,每小題3分,共18分)11.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).12.如圖,在等邊△ABC中,AB=4,D是BC的中點,將△ABD繞點A旋轉(zhuǎn)后得到△ACE,連接DE交AC于點F,則△AEF的面積為_______.13.當(dāng)__________時,二次函數(shù)有最小值___________.14.如圖所示:在平面直角坐標(biāo)系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.15.兩個完全相同的正五邊形都有一邊在直線l上,且有一個公共頂點O,其擺放方式如圖所示,則∠AOB等于______度.16.計算:﹣|﹣2|+()﹣1=_____.三、解答題(共8題,共72分)17.(8分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準(zhǔn)備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖318.(8分)某公司銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價和售價如表所示AB進(jìn)價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?(2)通過市場調(diào)研,該公司決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少的數(shù)量的1.5倍.若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過68萬元,問A種設(shè)備購進(jìn)數(shù)量至多減少多少套?19.(8分)如圖,已知BD是△ABC的角平分線,點E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.20.(8分)(1)計算:()﹣3×[﹣()3]﹣4cos30°+;(2)解方程:x(x﹣4)=2x﹣821.(8分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.22.(10分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.23.(12分)已知是關(guān)于的方程的一個根,則__24.隨著互聯(lián)網(wǎng)的發(fā)展,同學(xué)們的學(xué)習(xí)習(xí)慣也有了改變,一些同學(xué)在做題遇到困難時,喜歡上網(wǎng)查找答案.針對這個問題,某校調(diào)查了部分學(xué)生對這種做法的意見(分為:贊成、無所謂、反對),并將調(diào)查結(jié)果繪制成圖1和圖2兩個不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?將圖1補(bǔ)充完整;求出扇形統(tǒng)計圖中持“反對”意見的學(xué)生所在扇形的圓心角的度數(shù);根據(jù)抽樣調(diào)查結(jié)果,請你估計該校1500名學(xué)生中有多少名學(xué)生持“無所謂”意見.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】先將25100用科學(xué)記數(shù)法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D2、C【解析】13個不同的分?jǐn)?shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個數(shù),故只要知道自己的分?jǐn)?shù)和中位數(shù)就可以知道是否獲獎了.故選C.3、B【解析】

先由運算的定義,寫出3△5=25,4△7=28,得到關(guān)于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【詳解】由規(guī)定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關(guān)鍵是根據(jù)新運算的意義,正確的寫出3△5=25,4△7=28,2△2.4、B【解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標(biāo)為(1.5,),∴B3的坐標(biāo)為(1.5+1322,),故選B.點睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉(zhuǎn)6次,圖形向右平移2”是解題的關(guān)鍵.5、D【解析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數(shù)冪的乘法、除法的運算法則逐項進(jìn)行計算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【點睛】本題考查了合并同類項、單項式乘以單項式、同底數(shù)冪的乘除法,熟練掌握各運算的運算法則是解題的關(guān)鍵.6、B【解析】

設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據(jù)二次函數(shù)的圖像性質(zhì)可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據(jù)圖像的開口方向即可得出答案.【詳解】設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標(biāo)為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數(shù)圖像性質(zhì)及平移的特點,根據(jù)開口方向確定函數(shù)的增減性是解題關(guān)鍵.7、B【解析】

根據(jù)頻數(shù)÷頻率=總數(shù)可求出參加人數(shù),根據(jù)分別求出5分、15分、0分的人數(shù),即可求出平均分,根據(jù)0分的頻率即可求出800人中0分的人數(shù),根據(jù)中位數(shù)的定義求出中位數(shù),對選項進(jìn)行判斷即可.【詳解】∵5÷0.1=50(名),有50名同學(xué)參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學(xué)分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學(xué)參加知識競賽的平均成績?yōu)椋?10,故選項B正確;∵0分同學(xué)10人,其頻率為0.2,∴800名學(xué)生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學(xué)的成績?yōu)?0分、15分,∴抽到同學(xué)參加知識競賽成績的中位數(shù)為12.5分,故選項D錯誤.故選:B.【點睛】本題考查利用頻率估算概率,平均數(shù)及中位數(shù)的定義,熟練掌握相關(guān)知識是解題關(guān)鍵.8、C【解析】

由切線的性質(zhì)可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質(zhì).9、A【解析】

根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.10、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數(shù)所以圖中的小正方體最少2+4=1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側(cè)面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進(jìn)而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側(cè)面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉(zhuǎn)化為數(shù)學(xué)問題求解是本題的解題關(guān)鍵.12、【解析】

首先,利用等邊三角形的性質(zhì)求得AD=2;然后根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)推知△ADE為等邊三角形,則DE=AD,便可求出EF和AF,從而得到△AEF的面積.【詳解】解:∵在等邊△ABC中,∠B=60o,AB=4,D是BC的中點,∴AD⊥BC,∠BAD=∠CAD=30o,∴AD=ABcos30o=4×=2,根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠DAB=30o,AD=AE,∴∠DAE=∠EAC+∠CAD=60o,∴△ADE的等邊三角形,∴DE=AD=2,∠AEF=60o,∵∠EAC=∠CAD∴EF=DF=,AF⊥DE∴AF=EFtan60o=×=3,∴S△AEF=EF×AF=××3=.故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),熟記各性質(zhì)并求出△ADE是等邊三角形是解題的關(guān)鍵.13、15【解析】二次函數(shù)配方,得:,所以,當(dāng)x=1時,y有最小值5,故答案為1,5.14、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進(jìn)而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應(yīng)用能力,能夠正確的構(gòu)建出與已知和所求相關(guān)的直角三角形是解答此題的關(guān)鍵.15、108°【解析】

如圖,易得△OCD為等腰三角形,根據(jù)正五邊形內(nèi)角度數(shù)可求出∠OCD,然后求出頂角∠COD,再用360°減去∠AOC、∠BOD、∠COD即可【詳解】∵五邊形是正五邊形,∴每一個內(nèi)角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案為108°【點睛】本題考查正多邊形的內(nèi)角計算,分析出△OCD是等腰三角形,然后求出頂角是關(guān)鍵.16、﹣1【解析】

根據(jù)立方根、絕對值及負(fù)整數(shù)指數(shù)冪等知識點解答即可.【詳解】原式=-2-2+3=-1【點睛】本題考查了實數(shù)的混合運算,解題的關(guān)鍵是掌握運算法則及運算順序.三、解答題(共8題,共72分)17、(1);(2);(3)+.【解析】

(1)由等腰直角三角形的性質(zhì)可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當(dāng)QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關(guān)系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點A,點Q,點C,點P四點共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當(dāng)QC的長度最小時,PQ的長度最小,即當(dāng)QC⊥AB時,PQ的值最小,此時QC=2,PQ的最小值為;(3)如圖,作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵點F是EC中點,∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【點睛】本題是相似綜合題,考查了等腰直角三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)等知識,添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.18、(1)該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備20套,購進(jìn)B種品牌的教學(xué)設(shè)備30套;(2)A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量至多減少1套.【解析】

(1)設(shè)該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備x套,購進(jìn)B種品牌的教學(xué)設(shè)備y套,根據(jù)花11萬元購進(jìn)兩種設(shè)備銷售后可獲得利潤12萬元,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量減少m套,則B種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量增加1.5m套,根據(jù)總價=單價×數(shù)量結(jié)合用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過18萬元,即可得出關(guān)于m的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.【詳解】解:(1)設(shè)該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備x套,購進(jìn)B種品牌的教學(xué)設(shè)備y套,根據(jù)題意得:解得:.答:該公司計劃購進(jìn)A種品牌的教學(xué)設(shè)備20套,購進(jìn)B種品牌的教學(xué)設(shè)備30套.(2)設(shè)A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量減少m套,則B種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量增加1.5m套,根據(jù)題意得:1.5(20﹣m)+1.2(30+1.5m)≤18,解得:m≤,∵m為整數(shù),∴m≤1.答:A種品牌的教學(xué)設(shè)備購進(jìn)數(shù)量至多減少1套.【點睛】本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式.19、證明見解析.【解析】試題分析:先利用平行四邊形性質(zhì)證明DE=CF,再證明EB=ED,即可解決問題.試題解析:∵ED∥BC,EF∥AC,∴四邊形EFCD是平行四邊形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考點:平行四邊形的判定與性質(zhì).20、(1)3;(1)x1=4,x1=1.【解析】

(1)根據(jù)有理數(shù)的混合運算法則計算即可;(1)先移項,再提取公因式求解即可.【詳解】解:(1)原式=8×(﹣)﹣4×+1=8×﹣1+1=3;(1)移項得:x(x﹣4)﹣1(x﹣4)=0,(x﹣4)(x﹣1)=0,x﹣4=0,x﹣1=0,x1=4,x1=1.【點睛】本題考查了有理數(shù)的混合運算與解一元二次方程,解題的關(guān)鍵是熟練的掌握有理數(shù)的混合運算法則與根據(jù)因式分解法解一元二次方程.21、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出“至少有一人直行”的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩人之中至少有一人直行的結(jié)果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.22、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,結(jié)合∠DCB=∠DAE可得出∠DCB=∠AEB,進(jìn)而可得出AE∥DC、△AMF∽△CMD,根據(jù)相似三角形的性質(zhì)可得出=,根據(jù)AD∥BC,可得出△AMD∽△CMB,根據(jù)相似三角形的性質(zhì)可得出=,進(jìn)而可得出=,即MD2=MF?MB;(2)設(shè)FM=a,則BF=3a,BM=4a.由(1)的結(jié)論可求出MD的長

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論