版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022屆滄州市重點(diǎn)中學(xué)中考數(shù)學(xué)模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知關(guān)于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個(gè)相等的實(shí)數(shù)根B.方程有兩個(gè)不相等的實(shí)數(shù)根C.沒有實(shí)數(shù)根D.無法確定2.關(guān)于x的方程x2+(k2﹣4)x+k+1=0的兩個(gè)根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣23.下面運(yùn)算結(jié)果為的是A. B. C. D.4.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶35.下面運(yùn)算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|6.已知x2-2x-3=0,則2x2-4x的值為()A.-6 B.6 C.-2或6 D.-2或307.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間8.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)為2,當(dāng)時(shí),x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>29.已知,如圖,AB是⊙O的直徑,點(diǎn)D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°10.已知A、B兩地之間鐵路長為450千米,動(dòng)車比火車每小時(shí)多行駛50千米,從A市到B市乘動(dòng)車比乘火車少用40分鐘,設(shè)動(dòng)車速度為每小時(shí)x千米,則可列方程為()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.按照神舟號(hào)飛船環(huán)境控制與生命保障分系統(tǒng)的設(shè)計(jì)指標(biāo),“神舟”五號(hào)飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.12.甲乙兩人8次射擊的成績?nèi)鐖D所示(單位:環(huán))根據(jù)圖中的信息判斷,這8次射擊中成績比較穩(wěn)定的是______(填“甲”或“乙”)13.如圖,在平面直角坐標(biāo)系xOy中,△DEF可以看作是△ABC經(jīng)過若干次圖形的變化(平移、軸對(duì)稱、旋轉(zhuǎn))得到的,寫出一種由△ABC得到△DEF的過程:_____.14.如圖,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC為直徑的⊙O與AC相交于點(diǎn)O,則陰影部分的面積為_____.15.如圖,某數(shù)學(xué)興趣小組為了測(cè)量河對(duì)岸l1的兩棵古樹A、B之間的距離,他們?cè)诤舆@邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.16.含45°角的直角三角板如圖放置在平面直角坐標(biāo)系中,其中A(-2,0),B(0,1),則直線BC的解析式為______.三、解答題(共8題,共72分)17.(8分)我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數(shù),四軍才分布一疋,請(qǐng)問官軍多少數(shù).”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?18.(8分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀(jì)念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀(jì)念品的出廠價(jià)為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務(wù)完成后.統(tǒng)計(jì)發(fā)現(xiàn)平均每個(gè)工人每天創(chuàng)造的利潤為299元.工廠制定如下獎(jiǎng)勵(lì)制度:如果一個(gè)工人某天創(chuàng)造的利潤超過該平均值,則該工人當(dāng)天可獲得20元獎(jiǎng)金.請(qǐng)計(jì)算李師傅共可獲得多少元獎(jiǎng)金?19.(8分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(3,0),點(diǎn)B(0,4),把△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得△AB′O′,點(diǎn)B,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為B′,O.(1)如圖1,當(dāng)旋轉(zhuǎn)角為90°時(shí),求BB′的長;(2)如圖2,當(dāng)旋轉(zhuǎn)角為120°時(shí),求點(diǎn)O′的坐標(biāo);(3)在(2)的條件下,邊OB上的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+AP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo).(直接寫出結(jié)果即可)20.(8分)九(1)班針對(duì)“你最喜愛的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.根據(jù)以上信息解決下列問題:,;扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為°;從選航模項(xiàng)目的4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.21.(8分)某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有______人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為______%,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有______人喜歡籃球項(xiàng)目.(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.22.(10分)某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績,并繪制了如圖不完整的兩幅統(tǒng)計(jì)圖表.征文比賽成績頻數(shù)分布表分?jǐn)?shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計(jì)1請(qǐng)根據(jù)以上信息,解決下列問題:(1)征文比賽成績頻數(shù)分布表中c的值是;(2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).23.(12分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作x軸的平行線與拋物線上的另一個(gè)交點(diǎn)為D,連接AC、BC.點(diǎn)P是該拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點(diǎn)A、P的直線與y軸于點(diǎn)N,過點(diǎn)P作PM⊥CD,垂足為M,直線MN與x軸交于點(diǎn)Q,試判斷四邊形ADMQ的形狀,并說明理由.24.某商場(chǎng)銷售一批名牌襯衫,平均每天可以銷售20件,每件盈利40元,為了擴(kuò)大銷售,增加利潤,盡量減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫降價(jià)1元,商場(chǎng)平均每天多售出2件,若商場(chǎng)平均每天要盈利1200元,每件襯衫應(yīng)降價(jià)多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個(gè)不相等的實(shí)數(shù)根.故答案選B.考點(diǎn):一元二次方程根的判別式.2、D【解析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系列出方程求解即可.【詳解】設(shè)方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實(shí)數(shù)根互為相反數(shù),
∴x1+x1,=-(k1-4)=0,解得k=±1,
當(dāng)k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實(shí)數(shù)根,所以k=1舍去;
當(dāng)k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個(gè)不相等的實(shí)數(shù)根;
∴k=-1.
故選D.【點(diǎn)睛】本題考查的是根與系數(shù)的關(guān)系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時(shí),x1+x1=?,x1x1=,反過來也成立.3、B【解析】
根據(jù)合并同類項(xiàng)法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計(jì)算即可判斷.【詳解】.,此選項(xiàng)不符合題意;.,此選項(xiàng)符合題意;.,此選項(xiàng)不符合題意;.,此選項(xiàng)不符合題意;故選:.【點(diǎn)睛】本題考查了整式的運(yùn)算,解題的關(guān)鍵是掌握合并同類項(xiàng)法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.4、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點(diǎn)晴:本題主要通過證出兩個(gè)三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對(duì)應(yīng)邊之比的平方,進(jìn)而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關(guān)系(銳角三角形函數(shù))即可得出對(duì)應(yīng)邊之比,進(jìn)而得到面積比.5、D【解析】
分別利用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)分別化簡求出答案.【詳解】解:A,,故此選項(xiàng)錯(cuò)誤;B,,故此選項(xiàng)錯(cuò)誤;C,,故此選項(xiàng)錯(cuò)誤;D,,故此選項(xiàng)正確.所以D選項(xiàng)是正確的.【點(diǎn)睛】靈活運(yùn)用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)可以求出答案.6、B【解析】方程兩邊同時(shí)乘以2,再化出2x2-4x求值.解:x2-2x-3=0
2×(x2-2x-3)=0
2×(x2-2x)-6=0
2x2-4x=6
故選B.7、C【解析】
求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點(diǎn)睛】本題考查了估算無理數(shù)的大小和二次根式的性質(zhì),解此題的關(guān)鍵是得出<<,題目比較好,難度不大.8、D【解析】
先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點(diǎn)坐標(biāo),再由函數(shù)圖象即可得出結(jié)論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關(guān)于原點(diǎn)對(duì)稱,
∴A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,
∵點(diǎn)A的橫坐標(biāo)為1,∴點(diǎn)B的橫坐標(biāo)為-1,
∵由函數(shù)圖象可知,當(dāng)-1<x<0或x>1時(shí)函數(shù)y1=k1x的圖象在的上方,
∴當(dāng)y1>y1時(shí),x的取值范圍是-1<x<0或x>1.
故選:D.【點(diǎn)睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,能根據(jù)數(shù)形結(jié)合求出y1>y1時(shí)x的取值范圍是解答此題的關(guān)鍵.9、B【解析】因?yàn)锳B是⊙O的直徑,所以求得∠ADB=90°,進(jìn)而求得∠B的度數(shù),又因?yàn)椤螧=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所對(duì)的圓周角相等).
故選B.
10、D【解析】解:設(shè)動(dòng)車速度為每小時(shí)x千米,則可列方程為:﹣=.故選D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、17℃.【解析】
根據(jù)返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【點(diǎn)睛】本題考查正數(shù)和負(fù)數(shù)的意義.±4℃指的是比21℃高于4℃或低于4℃.12、甲【解析】由圖表明乙這8次成績偏離平均數(shù)大,即波動(dòng)大,而甲這8次成績,分布比較集中,各數(shù)據(jù)偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩(wěn)定的是甲.故答案為甲.13、平移,軸對(duì)稱【解析】分析:根據(jù)平移的性質(zhì)和軸對(duì)稱的性質(zhì)即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個(gè)單位,再沿y軸對(duì)折,得到△DEF,故答案為:平移,軸對(duì)稱.點(diǎn)睛:考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),平移,軸對(duì)稱,解題時(shí)需要注意:平移的距離等于對(duì)應(yīng)點(diǎn)連線的長度,對(duì)稱軸為對(duì)應(yīng)點(diǎn)連線的垂直平分線,旋轉(zhuǎn)角為對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線的夾角的大?。?4、6﹣π【解析】
連接、,根據(jù)陰影部分的面積計(jì)算.【詳解】連接、,,,,,為的直徑,,,,,,陰影部分的面積.故答案為.【點(diǎn)睛】本題考查的是扇形面積計(jì)算,掌握直角三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.15、(50﹣).【解析】
過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.16、【解析】
過C作CD⊥x軸于點(diǎn)D,則可證得△AOB≌△CDA,可求得CD和OD的長,可求得C點(diǎn)坐標(biāo),利用待定系數(shù)法可求得直線BC的解析式.【詳解】如圖,過C作CD⊥x軸于點(diǎn)D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),設(shè)直線BC解析式為y=kx+b,∴,解得:,∴直線BC解析式為yx+1.故答案為yx+1.【點(diǎn)睛】本題考查了待定系數(shù)法及全等三角形的判定和性質(zhì),構(gòu)造全等三角形求得C點(diǎn)坐標(biāo)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、官有200人,兵有800人【解析】
設(shè)官有x人,兵有y人,根據(jù)1000官兵正好分1000匹布,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論.【詳解】解:設(shè)官有x人,兵有y人,依題意,得:,解得:.答:官有200人,兵有800人.【點(diǎn)睛】本題主要考查二元一次方程組的應(yīng)用,根據(jù)題意列出二元一次方程組是解題的關(guān)鍵.18、(1)W=;(2)李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎(jiǎng)金.【解析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可以求得p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:(2)根據(jù)題意和題目中的函數(shù)表達(dá)式可以解答本題;(3)根據(jù)(2)中的結(jié)果和不等式的性質(zhì)可以解答本題.【詳解】(1)設(shè)p與x之間的函數(shù)關(guān)系式為p=kx+b,則有,解得,,即p與x的函數(shù)關(guān)系式為p=0.5x+7(1≤x≤15,x為整數(shù)),當(dāng)1≤x<10時(shí),W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,當(dāng)10≤x≤15時(shí),W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)當(dāng)1≤x<10時(shí),W=﹣x2+16x+260=﹣(x﹣8)2+324,∴當(dāng)x=8時(shí),W取得最大值,此時(shí)W=324,當(dāng)10≤x≤15時(shí),W=﹣20x+520,∴當(dāng)x=10時(shí),W取得最大值,此時(shí)W=320,∵324>320,∴李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)當(dāng)1≤x<10時(shí),令﹣x2+16x+260=299,得x1=3,x2=13,當(dāng)W>299時(shí),3<x<13,∵1≤x<10,∴3<x<10,當(dāng)10≤x≤15時(shí),令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李師傅獲得獎(jiǎng)金的的天數(shù)是第4天到第11天,李師傅共獲得獎(jiǎng)金為:20×(11﹣3)=160(元),即李師傅共可獲得160元獎(jiǎng)金.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,二次函數(shù)的應(yīng)用等,明確題意,找出各個(gè)量之間的關(guān)系,確立函數(shù)解析式,利用函數(shù)的性質(zhì)進(jìn)行解答是關(guān)鍵.19、(1)5;(2)O'(,);(3)P'(,).【解析】
(1)先求出AB.利用旋轉(zhuǎn)判斷出△ABB'是等腰直角三角形,即可得出結(jié)論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質(zhì)求出AH,OH,即可得出結(jié)論;(3)先確定出直線O'C的解析式,進(jìn)而確定出點(diǎn)P的坐標(biāo),再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋轉(zhuǎn)知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(2)如圖2,過點(diǎn)O'作O'H⊥x軸于H,由旋轉(zhuǎn)知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();(3)由旋轉(zhuǎn)知,AP=AP',∴O'P+AP'=O'P+AP.如圖3,作A關(guān)于y軸的對(duì)稱點(diǎn)C,連接O'C交y軸于P,∴O'P+AP=O'P+CP=O'C,此時(shí),O'P+AP的值最?。唿c(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱,∴C(﹣3,0).∵O'(),∴直線O'C的解析式為y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().【點(diǎn)睛】本題是幾何變換綜合題,考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),含30度角的直角三角形的性質(zhì),構(gòu)造出直角三角形是解答本題的關(guān)鍵.20、(1),;(2);(3).【解析】試題分析:(1)利用航模小組先求出數(shù)據(jù)總數(shù),再求出n.(2)小組所占圓心角=;(3)列表格求概率.試題解析:(1);(2);(3)將選航模項(xiàng)目的名男生編上號(hào)碼,將名女生編上號(hào)碼.用表格列出所有可能出現(xiàn)的結(jié)果:由表格可知,共有種可能出現(xiàn)的結(jié)果,并且它們都是第可能的,其中“名男生、名女生”有種可能.(名男生、名女生).(如用樹狀圖,酌情相應(yīng)給分)考點(diǎn):統(tǒng)計(jì)與概率的綜合運(yùn)用.21、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總?cè)藬?shù),然后用總?cè)藬?shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總?cè)藬?shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補(bǔ)全條形圖;(5)畫樹狀圖可得所有可能的情況,根據(jù)樹狀圖求得2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果,根據(jù)概率公式進(jìn)行計(jì)算即可.【詳解】(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),喜歡籃球項(xiàng)目的同學(xué)的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計(jì)全校學(xué)生中有80人喜歡籃球項(xiàng)目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果數(shù)為12,所以所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率=.22、(1)0.2;(2)答案見解析;(3)300【解析】
第一問,根據(jù)頻率的和為1,求出c的值;第二問,先用分?jǐn)?shù)段是90到100的頻數(shù)和頻率求出總的樣本數(shù)量,然后再乘以頻率分別求出a和b的值,再畫出頻數(shù)分布直方圖;第三問用全市征文的總篇數(shù)乘以80分以上的頻率得到全市80分以上的征文的篇數(shù).【詳解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案為0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,補(bǔ)全征文比賽成績頻數(shù)分布直方圖:(3)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù)為:1000×(0.2+0.1)=300(篇).【點(diǎn)睛】掌握有關(guān)頻率和頻數(shù)的相關(guān)概念和計(jì)算,是解答本題的關(guān)鍵.23、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】
(1)由點(diǎn)A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點(diǎn)G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點(diǎn)K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點(diǎn)P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個(gè)解.解之求得x的值即可得出答案;(3)先求出點(diǎn)D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時(shí),由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時(shí),同理可得.【詳解】解:(1)將點(diǎn)A(2,0)和點(diǎn)B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點(diǎn)B作BG⊥CA,交CA的延長線于點(diǎn)G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 異常流量監(jiān)測(cè)與識(shí)別-洞察分析
- 辦公環(huán)境中的創(chuàng)新教育實(shí)踐與思考
- 辦公環(huán)境下的學(xué)生運(yùn)動(dòng)團(tuán)隊(duì)建設(shè)與組織
- 企業(yè)中層管理崗位的工作規(guī)劃與管理執(zhí)行
- 企業(yè)員工子女教育的政策支持
- 辦公樓安全管理與風(fēng)險(xiǎn)防范的案例分析
- 以學(xué)生發(fā)展為中心的小學(xué)數(shù)學(xué)教學(xué)策略
- 創(chuàng)意攝影在科技產(chǎn)品宣傳中的運(yùn)用
- 主離合器銷壓器行業(yè)行業(yè)發(fā)展趨勢(shì)及投資戰(zhàn)略研究分析報(bào)告
- 2022-2027年中國絲綢面料服裝市場(chǎng)競爭態(tài)勢(shì)及行業(yè)投資潛力預(yù)測(cè)報(bào)告
- 高考英語單項(xiàng)選擇題題庫題
- 檢驗(yàn)檢測(cè)機(jī)構(gòu)資質(zhì)認(rèn)定現(xiàn)場(chǎng)評(píng)審日程表及簽到表
- 完整版高低壓開關(guān)柜投標(biāo)文件技術(shù)標(biāo)
- 蘭州市行政區(qū)劃代碼表
- 鐵路貨場(chǎng)平面圖和縱斷面CAD(共3頁)
- 管鮑之交-歷史劇劇本(共4頁)
- [交流][jtag]跟我學(xué)jtag協(xié)議破解——第一彈初識(shí)jtagtap狀態(tài)機(jī)
- 尼康FM2說明書25頁
- You-are-My-Sunshine中英文歌詞
- 甲醇制氫裝置冷凝器(E0103)設(shè)計(jì)
- 學(xué)校德育活動(dòng)安排表
評(píng)論
0/150
提交評(píng)論