上海市松江區(qū)名校2024年中考數學適應性模擬試題含解析_第1頁
上海市松江區(qū)名校2024年中考數學適應性模擬試題含解析_第2頁
上海市松江區(qū)名校2024年中考數學適應性模擬試題含解析_第3頁
上海市松江區(qū)名校2024年中考數學適應性模擬試題含解析_第4頁
上海市松江區(qū)名校2024年中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市松江區(qū)名校2024年中考數學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.(3分)如圖,是按一定規(guī)律排成的三角形數陣,按圖中數陣的排列規(guī)律,第9行從左至右第5個數是()A.2 B. C.5 D.2.已知函數,則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.33.撫順市中小學機器人科技大賽中,有7名學生參加決賽,他們決賽的成績各不相同,其中一名參賽選手想知道自己能否進入前4名,他除了知道自己成績外還要知道這7名學生成績的()A.中位數B.眾數C.平均數D.方差4.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.3 B.﹣1 C.﹣3 D.﹣25.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數是()A.25° B.35° C.45° D.65°6.的負倒數是()A. B.- C.3 D.﹣37.若一組數據2,3,,5,7的眾數為7,則這組數據的中位數為()A.2 B.3 C.5 D.78.下列計算結果為a6的是()A.a2?a3B.a12÷a2C.(a2)3D.(﹣a2)39.如圖,在中,D、E分別在邊AB、AC上,,交AB于F,那么下列比例式中正確的是A. B. C. D.10.已知關于x的方程恰有一個實根,則滿足條件的實數a的值的個數為()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.某同學對甲、乙、丙、丁四個市場二月份每天的白菜價格進行調查,計算后發(fā)現這個月四個市場的價格平均值相同、方差分別為S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜價格最穩(wěn)定的市場是_____.12.比較大?。?_________(填<,>或=).13.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.14.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個單位,再向上平移3個單位得到的拋物線的頂點坐標是_____.15.如圖所示,△ABC的頂點是正方形網格的格點,則sinA的值為____.16.如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為_____.17.如圖,在平面直角坐標系中,Rt△ABO的頂點O與原點重合,頂點B在x軸上,∠ABO=90°,OA與反比例函數y=的圖象交于點D,且OD=2AD,過點D作x軸的垂線交x軸于點C.若S四邊形ABCD=10,則k的值為.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,AB=AE,∠1=∠2,∠B=∠E.求證:BC=ED.19.(5分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數量關系.②猜測線段AF,BF與CE的數量關系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉至圖2位置時,線段AF,BF與CE又有怎樣的數量關系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續(xù)旋轉至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.20.(8分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數的圖象經過點M,N.求反比例函數的解析式;若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.21.(10分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)說明四邊形ACEF是平行四邊形;(2)當∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.22.(10分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點P從B點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經過多少時間,△BEP為等腰三角形.23.(12分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.24.(14分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數,隨機抽取了部分征文進行了調查,根據調查結果繪制成如下兩幅不完整的統(tǒng)計圖.(1)將上面的條形統(tǒng)計圖補充完整;(2)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計選擇以“友善”為主題的七年級學生有多少名?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據三角形數列的特點,歸納出每一行第一個數的通用公式,即可求出第9行從左至右第5個數.【詳解】根據三角形數列的特點,歸納出每n行第一個數的通用公式是,所以,第9行從左至右第5個數是=.故選B【點睛】本題主要考查歸納推理的應用,根據每一行第一個數的取值規(guī)律,利用累加法求出第9行第五個數的數值是解決本題的關鍵,考查學生的推理能力.2、D【解析】

解:如圖:利用頂點式及取值范圍,可畫出函數圖象會發(fā)現:當x=3時,y=k成立的x值恰好有三個.故選:D.3、A【解析】

7人成績的中位數是第4名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】由于總共有7個人,且他們的分數互不相同,第4的成績是中位數,要判斷是否進入前4名,故應知道中位數的多少,故選A.【點睛】本題主要考查統(tǒng)計的有關知識,主要包括平均數、中位數、眾數、方差的意義,熟練掌握相關的定義是解題的關鍵.4、C【解析】試題分析:根據根與系數的關系可得出兩根的積,即可求得方程的另一根.設m、n是方程x2+kx﹣3=0的兩個實數根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點】根與系數的關系;一元二次方程的解.5、A【解析】

如圖,過點C作CD∥a,再由平行線的性質即可得出結論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質與判定,根據題意作出輔助線,構造出平行線是解答此題的關鍵.6、D【解析】

根據倒數的定義,互為倒數的兩數乘積為1,2×=1.再求出2的相反數即可解答.【詳解】根據倒數的定義得:2×=1.

因此的負倒數是-2.

故選D.【點睛】本題考查了倒數,解題的關鍵是掌握倒數的概念.7、C【解析】試題解析:∵這組數據的眾數為7,∴x=7,則這組數據按照從小到大的順序排列為:2,3,1,7,7,中位數為:1.故選C.考點:眾數;中位數.8、C【解析】

分別根據同底數冪相乘、同底數冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;

B、a12÷a2=a10,此選項不符合題意;

C、(a2)3=a6,此選項符合題意;

D、(-a2)3=-a6,此選項不符合題意;

故選C.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪相乘、同底數冪相除、冪的乘方的運算法則.9、C【解析】

根據平行線分線段成比例定理和相似三角形的性質找準線段的對應關系,對各選項分析判斷.【詳解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本選項錯誤;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤;C、∵EF∥CD,DE∥BC,∴,,∴,故本選項正確;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤.故選C.【點睛】本題考查了平行線分線段成比例的運用及平行于三角形一邊的直線截其它兩邊,所得的新三角形與原三角形相似的定理的運用,在解答時尋找對應線段是關?。?0、C【解析】

先將原方程變形,轉化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、乙.【解析】

據方差的意義可作出判斷.方差是用來衡量一組數據波動大小的量,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩(wěn)定,即可得出答案.【詳解】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜價格最穩(wěn)定的市場是乙;故答案為:乙.【點睛】本題考查方差的意義.解題關鍵是掌握方差的意義:方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩(wěn)定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩(wěn)定.12、<【解析】【分析】根據實數大小比較的方法進行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數大小的比較,熟練掌握實數大小比較的方法是解題的關鍵.13、B【解析】

過P點作PE⊥BP,垂足為P,交BC于E,根據AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.14、(﹣7,0)【解析】

直接利用平移規(guī)律“左加右減,上加下減”得出平移后的解析式進而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個單位,再向上平移3個單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點坐標是:(-7,0).故答案為(-7,0).【點睛】此題主要考查了二次函數與幾何變換,正確掌握平移規(guī)律是解題關鍵.15、.【解析】

解:連接CE,∵根據圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點:勾股定理;三角形的面積;銳角三角函數的定義.16、【解析】

由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據S陰影=S△OAB-S扇形OMN,進而可得出結論.【詳解】∵六邊形ABCDEF是正六邊形,

∴∠AOB=60°,

∴△OAB是等邊三角形,OA=OB=AB=2,

設點G為AB與⊙O的切點,連接OG,則OG⊥AB,

∴∴S陰影=S△OAB-S扇形OMN=故答案為【點睛】考查不規(guī)則圖形面積的計算,掌握扇形的面積公式是解題的關鍵.17、﹣1【解析】

∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】

由∠1=∠2可得∠CAB=∠DAE,再根據ASA證明△ABC≌△AED,即可得出答案.【詳解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC與△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.19、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解析】

(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【詳解】解:(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過點C作CG⊥BF,交BF延長線于點G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過點C做CD⊥BF,交FB的于點D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【點睛】本題考查幾何變換綜合題、正方形的判定和性質、全等三角形的判定和性質、平行線分線段成比例定理、等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.20、(1);(2)點P的坐標是(0,4)或(0,-4).【解析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標,把M的坐標代入反比例函數的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標.【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標代入得:k=4,∴反比例函數的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點P的坐標是(0,4)或(0,-4).21、(1)說明見解析;(2)當∠B=30°時,四邊形ACEF是菱形.理由見解析.【解析】試題分析:(1)證明△AEC≌△EAF,即可得到EF=CA,根據兩組對邊分別相等的四邊形是平行四邊形即可判斷;(2)當∠B=30°時,四邊形ACEF是菱形.根據直角三角形的性質,即可證得AC=EC,根據菱形的定義即可判斷.(1)證明:由題意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四邊形ACEF是平行四邊形.(2)解:當∠B=30°時,四邊形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位線,∴E是AB的中點,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四邊形ACEF是菱形.考點:菱形的判定;全等三角形的判定與性質;線段垂直平分線的性質;平行四邊形的判定.22、(1)證明見解析;(2)從運動開始經過2s或s或s或s時,△BEP為等腰三角形.【解析】

(1)根據內錯角相等,得到兩邊平行,然后再根據三角形內角和等于180度得到另一對內錯角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,設經過ts時,△BEP是等腰三角形,當P在BC上時,①BP=EB=2cm,t=2時,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC=,∴BP=cm,t=時,△BEP是等腰三角形;③B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論