上海市徐匯區(qū)重點達標名校2023-2024學年中考試題猜想數(shù)學試卷含解析_第1頁
上海市徐匯區(qū)重點達標名校2023-2024學年中考試題猜想數(shù)學試卷含解析_第2頁
上海市徐匯區(qū)重點達標名校2023-2024學年中考試題猜想數(shù)學試卷含解析_第3頁
上海市徐匯區(qū)重點達標名校2023-2024學年中考試題猜想數(shù)學試卷含解析_第4頁
上海市徐匯區(qū)重點達標名校2023-2024學年中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市徐匯區(qū)重點達標名校2023-2024學年中考試題猜想數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.矩形ABCD的頂點坐標分別為A(1,4)、B(1,1)、C(5,1),則點D的坐標為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)2.如圖,中,,且,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關系的圖象為下列選項中的A. B. C. D.3.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.44.﹣2的絕對值是()A.2 B. C. D.5.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.6.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°7.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.8.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°9.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣310.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.11.下列計算正確的是()A.3a﹣2a=1 B.a(chǎn)2+a5=a7 C.(ab)3=ab3 D.a(chǎn)2?a4=a612.計算x﹣2y﹣(2x+y)的結(jié)果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組的解集是__________.14.已知關于x的方程x2﹣2x+n=1沒有實數(shù)根,那么|2﹣n|﹣|1﹣n|的化簡結(jié)果是_____.15.如圖,從直徑為4cm的圓形紙片中,剪出一個圓心角為90°的扇形OAB,且點O、A、B在圓周上,把它圍成一個圓錐,則圓錐的底面圓的半徑是_____cm.16.若二次函數(shù)y=-x2-4x+k的最大值是9,則k=______.17.若分式的值為正,則實數(shù)的取值范圍是__________________.18.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為迎接“全民閱讀日“系列活動,某校圍繞學生日人均閱讀時間這一問題,對八年級學生進行隨機抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整),請你根據(jù)圖中提供的信息解答下列問題:(1)本次共抽查了八年級學生多少人;(2)請直接將條形統(tǒng)計圖補充完整;(3)在扇形統(tǒng)計圖中,1?1.5小時對應的圓心角是多少度;(4)根據(jù)本次抽樣調(diào)查,估計全市50000名八年級學生日人均閱讀時間狀況,其中在0.5?1.5小時的有多少人?20.(6分)如圖,在平面直角坐標系中,拋物線C1經(jīng)過點A(﹣4,0)、B(﹣1,0),其頂點為.(1)求拋物線C1的表達式;(2)將拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設拋物線C3與x軸分別交于點E、F(E在F左側(cè)),頂點為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點E的坐標.21.(6分)某公司投入研發(fā)費用80萬元(80萬元只計入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6元/件.此產(chǎn)品年銷售量y(萬件)與售價x(元/件)之間滿足函數(shù)關系式y(tǒng)=﹣x+1.求這種產(chǎn)品第一年的利潤W1(萬元)與售價x(元/件)滿足的函數(shù)關系式;該產(chǎn)品第一年的利潤為20萬元,那么該產(chǎn)品第一年的售價是多少?第二年,該公司將第一年的利潤20萬元(20萬元只計入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5元/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價不超過第一年的售價,另外受產(chǎn)能限制,銷售量無法超過12萬件.請計算該公司第二年的利潤W2至少為多少萬元.22.(8分)已知:如圖,AB=AE,∠1=∠2,∠B=∠E.求證:BC=ED.23.(8分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.24.(10分)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.25.(10分)(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關系,并證明你的結(jié)論;(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.26.(12分)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.27.(12分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由矩形的性質(zhì)可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點D坐標.【詳解】解:∵四邊形ABCD是矩形

∴AB∥CD,AB=CD,AD=BC,AD∥BC,

∵A(1,4)、B(1,1)、C(5,1),

∴AB∥CD∥y軸,AD∥BC∥x軸

∴點D坐標為(5,4)

故選B.【點睛】本題考查了矩形的性質(zhì),坐標與圖形性質(zhì),關鍵是熟練掌握這些性質(zhì).2、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關系的圖象應為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.【點睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關系式,由函數(shù)解析式來選擇圖象.3、C【解析】

設BN=x,則由折疊的性質(zhì)可得DN=AN=9-x,根據(jù)中點的定義可得BD=3,在Rt△BND中,根據(jù)勾股定理可得關于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質(zhì),得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質(zhì),勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質(zhì)及勾股定理是解答本題的關鍵.4、A【解析】分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.5、D【解析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).6、B【解析】

先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點睛】本題考查了多邊形內(nèi)角與外角,關鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).7、D【解析】

連接OC、OD、BD,根據(jù)點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.8、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補,并根據(jù)已知∠ACD=40°計算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關鍵是熟練掌握兩直線平行,同旁內(nèi)角互補.9、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關鍵.10、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻11、D【解析】

根據(jù)合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.【點睛】本題考查了合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.12、C【解析】

原式去括號合并同類項即可得到結(jié)果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥1【解析】分析:分別求出兩個不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點睛:本題主要考查的是不等式組的解集,屬于基礎題型.理解不等式的性質(zhì)是解決這個問題的關鍵.14、﹣1【解析】

根據(jù)根與系數(shù)的關系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去絕對值符號,即可得出答案.【詳解】解:∵關于x的方程x2?2x+n=1沒有實數(shù)根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2?n|-│1-n│=n-2-n+1=-1.故答案為-1.【點睛】本題考查了根的判別式,解題的關鍵是根據(jù)根與系數(shù)的關系求出n的取值范圍再去絕對值求解即可.15、【解析】

設圓錐的底面圓的半徑為r,由于∠AOB=90°得到AB為圓形紙片的直徑,則OB=cm,根據(jù)弧長公式計算出扇形OAB的弧AB的長,然后根據(jù)圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進行計算.【詳解】解:設圓錐的底面圓的半徑為r,連結(jié)AB,如圖,∵扇形OAB的圓心角為90°,∴∠AOB=90°,∴AB為圓形紙片的直徑,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的長=π,∴2πr=π,∴r=(cm).故答案為.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了圓周角定理和弧長公式.16、5【解析】y=?(x?2)2+4+k,∵二次函數(shù)y=?x2?4x+k的最大值是9,∴4+k=9,解得:k=5,故答案為:5.17、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.18、56【解析】

解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)本次共抽查了八年級學生是150人;(2)條形統(tǒng)計圖補充見解析;(3)108;(4)估計該市12000名七年級學生中日人均閱讀時間在0.5~1.5小時的40000人.【解析】

(1)根據(jù)第一組的人數(shù)是30,占20%,即可求得總數(shù),即樣本容量;(2)利用總數(shù)減去另外兩段的人數(shù),即可求得0.5~1小時的人數(shù),從而作出直方圖;(3)利用360°乘以日人均閱讀時間在1~1.5小時的所占的比例;(4)利用總?cè)藬?shù)12000乘以對應的比例即可.【詳解】(1)本次共抽查了八年級學生是:30÷20%=150人;故答案為150;(2)日人均閱讀時間在0.5~1小時的人數(shù)是:150﹣30﹣45=1.(3)人均閱讀時間在1~1.5小時對應的圓心角度數(shù)是:故答案為108;(4)(人),答:估計該市12000名七年級學生中日人均閱讀時間在0.5~1.5小時的40000人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)y;(2);(3)E(,0).【解析】

(1)根據(jù)拋物線C1的頂點坐標可設頂點式將點B坐標代入求解即可;(2)由拋物線C1繞點B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點坐標,可設拋物線C2的頂點式,根據(jù)旋轉(zhuǎn)后拋物線C2開口朝下,且形狀不變即可確定其表達式;(3)作GK⊥x軸于G,DH⊥AB于H,由題意GK=DH=3,AH=HB=EK=KF,結(jié)合矩形的性質(zhì)利用兩組對應角分別相等的兩個三角形相似可證△AGK∽△GFK,由其對應線段成比例的性質(zhì)可知AK長,結(jié)合A、B點坐標可知BK、BE、OE長,可得點E坐標.【詳解】解:(1)∵拋物線C1的頂點為,∴可設拋物線C1的表達式為y,將B(﹣1,0)代入拋物線解析式得:,∴,解得:a,∴拋物線C1的表達式為y,即y.(2)設拋物線C2的頂點坐標為∵拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,即點與點關于點B(﹣1,0)對稱∴拋物線C2的頂點坐標為()可設拋物線C2的表達式為y∵拋物線C2開口朝下,且形狀不變∴拋物線C2的表達式為y,即.(3)如圖,作GK⊥x軸于G,DH⊥AB于H.由題意GK=DH=3,AH=HB=EK=KF,∵四邊形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=6,,∴BE=BK﹣EK=3,∴OE,∴E(,0).【點睛】本題考查了二次函數(shù)與幾何的綜合,涉及了待定系數(shù)法求二次函數(shù)解析式、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),靈活的利用待定系數(shù)法求二次函數(shù)解析式是解前兩問的關鍵,熟練掌握相似三角形的判定與性質(zhì)是解(3)的關鍵.21、(1)W1=﹣x2+32x﹣2;(2)該產(chǎn)品第一年的售價是16元;(3)該公司第二年的利潤W2至少為18萬元.【解析】

(1)根據(jù)總利潤=每件利潤×銷售量﹣投資成本,列出式子即可;(2)構建方程即可解決問題;(3)根據(jù)題意求出自變量的取值范圍,再根據(jù)二次函數(shù),利用而學會設的性質(zhì)即可解決問題.【詳解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由題意:20=﹣x2+32x﹣2.解得:x=16,答:該產(chǎn)品第一年的售價是16元.(3)由題意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7時,W2有最小值,最小值=18(萬元),答:該公司第二年的利潤W2至少為18萬元.【點睛】本題考查二次函數(shù)的應用、一元二次方程的應用等知識,解題的關鍵是理解題意,學會構建方程或函數(shù)解決問題.22、證明見解析.【解析】

由∠1=∠2可得∠CAB=∠DAE,再根據(jù)ASA證明△ABC≌△AED,即可得出答案.【詳解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC與△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.23、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結(jié)合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結(jié)合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,由此可得BE=BN.詳解:(1)∵四邊形ABCD為平行四四邊形邊形,∴AB//CD.∴∠EAG=∠FCG.∵點G為對角線AC的中點,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四邊形ENFM為平行四邊形.(2)∵四邊形ENFM為矩形,∴EF=MN,且EG=,GN=,∴EG=NG,又∵AG=CG,∠AGE=∠CGN,∴△EAG≌△NCG,∴∠BAC=∠ACB,AE=CN,∴AB=BC,∴AB-AE=CB-CN,∴BE=BN.點睛:本題是一道考查平行四邊形的判定和性質(zhì)及矩形性質(zhì)的題目,熟練掌握相關圖形的性質(zhì)和判定是順利解題的關鍵.24、(1)拋物線解析式為,頂點為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對稱軸解析式,可用頂點式二次函數(shù)通式來設拋物線,然后將A、B兩點坐標代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點的橫坐標,用拋物線的解析式求出E點的縱坐標,那么E點縱坐標的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關系式進而可得出S與x的函數(shù)關系式.(3)①將S=24代入S,x的函數(shù)關系式中求出x的值,即可得出E點的坐標和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應該是等腰直角三角形,即E點的坐標為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點.【詳解】(1)由拋物線的對稱軸是,可設解析式為.把A、B兩點坐標代入上式,得解之,得故拋物線解析式為,頂點為(2)∵點在拋物線上,位于第四象限,且坐標適合,∴y<0,即-y>0,-y表示點E到OA的距離.∵OA是的對角線,∴.因為拋物線與軸的兩個交點是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當S=24時,即.化簡,得解之,得故所求的點E有兩個,分別為E1(3,-4),E2(4,-4).點E1(3,-4)滿足OE=AE,所以是菱形;點E2(4,-4)不滿足OE=AE,所以不是菱形.②當OA⊥EF,且OA=EF時,是正方形,此時點E的坐標只能是(3,-3).而坐標為(3,-3)的點不在拋物線上,故不存在這樣的點E,使為正方形.25、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論