版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省瀘州老窖天府中學2024年高一數(shù)學第二學期期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,(,,分別為角、、的對邊),則的形狀為()A.等邊三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形2.記等差數(shù)列的前n項和為.若,則()A.7 B.8 C.9 D.103.已知數(shù)列滿足若,則數(shù)列的第2018項為()A. B. C. D.4.我國古代數(shù)學家劉徽在《九章算術注》中提出割圓術:“割之彌細,所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形細割圓,并使正多邊形的面積無限接近圓的面積,進而來求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成()A. B. C. D.5.下列命題中不正確的是()A.平面∥平面,一條直線平行于平面,則一定平行于平面B.平面∥平面,則內(nèi)的任意一條直線都平行于平面C.一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行D.分別在兩個平行平面內(nèi)的兩條直線只能是平行直線或異面直線6.不等式所表示的平面區(qū)域是()A. B.C. D.7.已知數(shù)列的前項和為,,且滿足,若,則的值為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,則輸出的值為()A.7 B.6 C.5 D.49.設,滿足約束條件,則目標函數(shù)的最小值為()A. B. C. D.10.已知函數(shù)f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,16二、填空題:本大題共6小題,每小題5分,共30分。11.對于數(shù)列滿足:,其前項和為記滿足條件的所有數(shù)列中,的最大值為,最小值為,則___________12.已知數(shù)列{}滿足,若數(shù)列{}單調(diào)遞增,數(shù)列{}單調(diào)遞減,數(shù)列{}的通項公式為____.13.已知數(shù)列是等差數(shù)列,若,,則________.14.用秦九韶算法求多項式當時的值的過程中:,__.15.設公差不為零的等差數(shù)列的前項和為,若,則__________.16.等腰直角中,,CD是AB邊上的高,E是AC邊的中點,現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)已知,記(且),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請說明理由;(3)若數(shù)列,對于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列.18.為了了解某市高中學生的漢字書寫水平,在全市范圍內(nèi)隨機抽取了近千名學生參加漢字聽寫考試,將所得數(shù)據(jù)進行分組,分組區(qū)間為:,并繪制出頻率分布直方圖,如圖所示.(1)求頻率分布直方圖中的值,并估計該市高中學生的平均成績;(2)設、、、四名學生的考試成績在區(qū)間內(nèi),、兩名學生的考試成績在區(qū)間內(nèi),現(xiàn)從這6名學生中任選兩人參加座談會,求學生、至少有一人被選中的概率.19.已知四棱錐的底面為直角梯形,,,底面,且,是的中點.(1)求證:直線平面;(2)若,求二面角的正弦值.20.已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)當時,證明不等式:.21.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求三棱柱的高.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用二倍角公式,正弦定理,結合和差公式化簡等式得到,得到答案.【詳解】故答案選B【點睛】本題考查了正弦定理,和差公式,意在考查學生的綜合應用能力.2、D【解析】
由可得值,可得可得答案.【詳解】解:由,可得,所以,從而,故選D.【點睛】本題主要考察等差數(shù)列的性質(zhì)及等差數(shù)列前n項的和,由得出的值是解題的關鍵.3、A【解析】
利用數(shù)列遞推式求出前幾項,可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應用,考查學生分析解決問題的能力,屬于中檔題.4、C【解析】
設圓的半徑為,由內(nèi)接正邊形的面積無限接近圓的面積可得:,由內(nèi)接正邊形的面積無限接近圓的面積可得:,問題得解.【詳解】設圓的半徑為,將內(nèi)接正邊形分成個小三角形,由內(nèi)接正邊形的面積無限接近圓的面積可得:,整理得:,此時,即:同理,由內(nèi)接正邊形的面積無限接近圓的面積可得:,整理得:此時所以故選C【點睛】本題主要考查了圓的面積公式及三角形面積公式的應用,還考查了正弦的二倍角公式,考查計算能力,屬于中檔題.5、A【解析】
逐一考查所給的選項是否正確即可.【詳解】逐一考查所給的選項:A.平面∥平面,一條直線平行于平面,可能a在平面內(nèi)或與相交,不一定平行于平面,題中說法錯誤;B.由面面平行的定義可知:若平面∥平面,則內(nèi)的任意一條直線都平行于平面,題中說法正確;C.由面面平行的判定定理可得:若一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行,題中說法正確;D.分別在兩個平行平面內(nèi)的兩條直線只能是平行直線或異面直線,不可能相交,題中說法正確.本題選擇A選項.【點睛】本題考查了空間幾何體的線面位置關系判定與證明:(1)對于異面直線的判定要熟記異面直線的概念:把既不平行也不相交的兩條直線稱為異面直線;(2)對于線面位置關系的判定中,熟記線面平行與垂直、面面平行與垂直的定理是關鍵.6、D【解析】
根據(jù)二元一次不等式組表示平面區(qū)域進行判斷即可.【詳解】不等式組等價為或則對應的平面區(qū)域為D,
故選:D.【點睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎.7、D【解析】
由遞推關系可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求得公差;利用等差數(shù)列通項公式和前項和公式分別求得和,代入求得結果.【詳解】由得:數(shù)列為等差數(shù)列,設其公差為,,解得:,本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到利用遞推關系式證明數(shù)列為等差數(shù)列、等差數(shù)列通項公式和前項和公式的應用.8、C【解析】
由流程圖循環(huán)4次,輸出,即可得出結果..【詳解】初始值,,是,第一次循環(huán):,,是,第二次循環(huán):,,是,第三次循環(huán):,,是,第四次循環(huán):S,,否,輸出.故選C.【點睛】本題考查程序框圖的循環(huán),分析框圖的作用,逐步執(zhí)行即可,屬于基礎題.9、A【解析】如圖,過時,取最小值,為。故選A。10、B【解析】
由題得ωπ-π3<ωx-【詳解】因為π<x≤2π,ω>0,所以ωπ-π因為fx在區(qū)間(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因為k+1所以-4因為k∈Z,所以k=-1或k=0.當k=-1時,0<ω<16;當k=0時,故選:B【點睛】本題主要考查三角函數(shù)的零點問題和三角函數(shù)的圖像和性質(zhì),意在考查學生對該知識的理解掌握水平,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
由,,,,,分別令,3,4,5,求得的前5項,觀察得到最小值,,計算即可得到的值.【詳解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.綜上可得的最大值,最小值為,則.故答案為:1.【點睛】本題考查數(shù)列的和的最值,注意運用元素與集合的關系,運用列舉法,考查判斷能力和運算能力,屬于中檔題.12、【解析】
分別求出{}、{}的通項公式,再統(tǒng)一形式即可得解。【詳解】解:根據(jù)題意,又單調(diào)遞減,{}單調(diào)遞減增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,綜上,【點睛】本題考查了等比數(shù)列性質(zhì)的靈活運用,考查了分類思想和運算能力,屬于難題。13、【解析】
求出公差,利用通項公式即可求解.【詳解】設公差為,則所以故答案為:【點睛】本題主要考查了等差數(shù)列基本量的計算,屬于基礎題.14、1【解析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,進而得出.【詳解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,當x=2時,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案為:1.【點睛】本題考查了秦九韶算法,考查了推理能力與計算能力,屬于基礎題.15、【解析】
設出數(shù)列的首項和公差,根據(jù)等差數(shù)列通項公式和前項和公式,代入條件化簡得和的關系,再代入所求的式子進行化簡求值.【詳解】解:設等差數(shù)列的首項為,公差為,由,得,得,.故答案為:【點睛】本題考查了等差數(shù)列通項公式和前n項和公式的簡單應用,屬于基礎.16、【解析】
取的中點,連接,則與所成角即為與所成角,根據(jù)已知可得,,可以判斷三角形為等邊三角形,進而求出異面直線直線DE與AB所成角.【詳解】取的中點,連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【點睛】本題考查立體幾何中的翻折問題,考查了異面直線所成的角,考查了學生的空間想象能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)見解析【解析】
(1)根據(jù)和項與通項關系得,再根據(jù)等比數(shù)列定義與通項公式求解(2)先化簡,再根據(jù)恒成立思想求的值(3)根據(jù)和項得,再作差得,最后根據(jù)等差數(shù)列定義證明.【詳解】(1),所以,由得時,,兩式相減得,,,數(shù)列是以2為首項,公比為的等比數(shù)列,所以.(2)若數(shù)列是常數(shù)列,為常數(shù).只有,解得,此時.(3)①,,其中,所以,當時,②②式兩邊同時乘以得,③①式減去③得,,所以,因為,所以數(shù)列是以為首項,公差為的等差數(shù)列.【點睛】本題考查利用和項求通項、等差數(shù)列定義以及利用恒成立思想求參數(shù),考查基本分析論證與求解能力,屬中檔題18、(1);(2).【解析】
(1)由頻率分布直方圖能求出a.由此能估計該市高中學生的平均成績;(2)現(xiàn)從這6名學生中任選兩人參加座談會,求出基本事件總數(shù),再學生M、N至少有一人被選中包含的基本事件個數(shù),由此能求出學生M、N至少有一人被選中的概率.【詳解】(1)由頻率分布直方圖得:,∴估計該市高中學生的平均成績?yōu)椋海?)設A、B、C、D四名學生的考試成績在區(qū)間[80,90)內(nèi),M、N兩名學生的考試成績在區(qū)間[60,70)內(nèi),現(xiàn)從這6名學生中任選兩人參加座談會,基本事件總數(shù),學生M、N至少有一人被選中包含的基本事件個數(shù),∴學生M、N至少有一人被選中的概率.【點睛】本題考查了利用頻率分布直方圖求平均數(shù),考查了古典概型計算公式,考查了數(shù)學運算能力.19、(1)證明見解析;(2).【解析】
(1)取中點,連結,,推導出,,從而平面平面,由此能證明直線平面;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.【詳解】(1)證明:取中點,連結,,,是的中點,,,,,平面平面,平面,直線平面.(2)解:,,底面,,是的中點,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,設平面的法向量,,,則,取,得.設平面的法向量,,,則,取,得.設二面角的平面角為,則.二面角的余弦值為.【點睛】本題主要考查線面平行的證明,考查二面角的余弦值的求法,考查運算求解能力,屬于中檔題.20、(1);(2)見解析.【解析】
(1)分和兩種情況討論,利用,可得出數(shù)列的通項公式;(2)由得,從而可得,即可證明出結論.【詳解】(1),,.①當時,數(shù)列是各項均為的常數(shù)列,則;②當時,數(shù)列是以為首項,以為公比的等比數(shù)列,,.當時,也適合.綜上所述,;(2)由,得,,,,因此,.【點睛】本題考查數(shù)列的通項,考查不等式的證明,考查學生分析解決問題的能力,屬于中檔題.21、(1)證明見解析(2)【解析】
(1)連接,,作為棱的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級化學下冊 第7章 應用廣泛的酸、堿、鹽 基礎實驗8 酸與堿的化學性質(zhì)教案 (新版)滬教版
- 高中語文 第一單元 第1課《三國演義》-曹操獻刀教案 新人教版選修中國小說欣賞
- 2024秋四年級英語上冊 Unit 4 My home課時3 Let's spell教案 人教PEP
- 2024年中小企業(yè)融資借款合同
- 2024壬癸雙方關于提供20輛出租車的租賃服務的合同
- 2024臨時搭建空閑用地租賃協(xié)議
- 2024商場食品安全檢測服務合同
- 2024年安置房買賣合同中的合同更新
- 2024年廣告位租賃及發(fā)布合同
- 2024年塔吊施工隊伍勞務承包及服務合同
- 白改黑施工組織設計
- ICU患者失禁性皮炎的預防及護理新進展
- 半導體工藝 摻雜原理與技術
- 南京航空航天大學考試卷
- “葫蘆絲進初中音樂課堂的策略研究”課題結題報告
- GB/T 10822-2014一般用途織物芯阻燃輸送帶
- GA/T 1629-2019法庭科學血液、尿液中百草枯檢驗氣相色譜和氣相色譜-質(zhì)譜法
- 開題報告 地方政府融資平臺問題分析與轉(zhuǎn)型發(fā)展研究-以A平臺公司為例
- 中小學幼兒園師德師風監(jiān)測臺賬(對教師)
- 科技改變生活-課件
- UPS電源蓄電池更換實施方案
評論
0/150
提交評論