云南省建水縣2024屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第1頁
云南省建水縣2024屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第2頁
云南省建水縣2024屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第3頁
云南省建水縣2024屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第4頁
云南省建水縣2024屆高一下數(shù)學(xué)期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省建水縣2024屆高一下數(shù)學(xué)期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線傾斜角的范圍是()A.(0,] B.[0,] C.[0,π) D.[0,π]2.甲:(是常數(shù))乙:丙:(、是常數(shù))?。海?、是常數(shù)),以上能成為數(shù)列是等差數(shù)列的充要條件的有幾個()A.1 B.2 C.3 D.43.經(jīng)過兩條直線和的交點,且垂直于直線的直線方程為()A. B. C. D.4.在等比數(shù)列中,,,則()A. B.C. D.5.圖1是我國古代數(shù)學(xué)家趙爽創(chuàng)制的一幅“勾股圓方圖”(又稱“趙爽弦圖”),它是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形.受其啟發(fā),某同學(xué)設(shè)計了一個圖形,它是由三個全等的鈍角三角形與中間一個小正三角形拼成一個大正三角形,如圖2所示,若,,則線段的長為()A.3 B.3.5 C.4 D.4.56.的值等于()A. B. C. D.7.下列函數(shù)中,在上存在最小值的是()A. B. C. D.8.設(shè)的內(nèi)角,,的對邊分別為,,.若,,,且,則()A. B. C. D.9.?dāng)?shù)列的通項公式,其前項和為,則等于()A. B. C. D.10.已知向量,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,將全體正整數(shù)排成一個三角形數(shù)陣,按照這樣的排列規(guī)律,第行從右至左的第3個數(shù)為___________.12.382與1337的最大公約數(shù)是__________.13.?dāng)?shù)列滿足:,,則______.14.如圖1,動點在以為圓心,半徑為1米的圓周上運動,從最低點開始計時,用時4分鐘逆時針勻速旋轉(zhuǎn)一圈后停止.設(shè)點的縱坐標(biāo)(米)關(guān)于時間(分)的函數(shù)為,則該函數(shù)的圖像大致為________.(請注明關(guān)鍵點)15.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.16.已知三棱柱的側(cè)棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)()的一段圖象如圖所示.(1)求函數(shù)的解析式;(2)若,求函數(shù)的值域.18.正項數(shù)列的前項和為,且.(Ⅰ)試求數(shù)列的通項公式;(Ⅱ)設(shè),求的前項和為.(Ⅲ)在(Ⅱ)的條件下,若對一切恒成立,求實數(shù)的取值范圍.19.已知函數(shù),(1)求函數(shù)的最小正周期;(2)設(shè)的內(nèi)角的對邊分別為,且,,,求的面積.20.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項和Sn.21.如圖,在平面直角坐標(biāo)系中,點,,銳角的終邊與單位圓O交于點P.(Ⅰ)當(dāng)時,求的值;(Ⅱ)在軸上是否存在定點M,使得恒成立?若存在,求出點M坐標(biāo);若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:根據(jù)直線傾斜角的定義判斷即可.解:直線傾斜角的范圍是:[0,π),故選C.2、D【解析】

由等差數(shù)列的定義和求和公式、通項公式的關(guān)系,以及性質(zhì),即可得到結(jié)論.【詳解】數(shù)列是等差數(shù)列,設(shè)公差為,由定義可得(是常數(shù)),且(是常數(shù)),,令,即(、是常數(shù)),等差數(shù)列通項,令,即(、是常數(shù)),綜上可得甲乙丙丁都對.故選:D.【點睛】本題考查等差數(shù)列的定義和通項公式、求和公式的關(guān)系,考查充分必要條件的定義,考查推理能力,屬于基礎(chǔ)題.3、D【解析】

首先求出兩條直線的交點坐標(biāo),再根據(jù)垂直求出斜率,點斜式寫方程即可.【詳解】有題知:,解得:,交點.直線的斜率為,所求直線斜率為.所求直線為:,即.故選:D【點睛】本題主要考查如何求兩條直線的交點坐標(biāo),同時考查了兩條直線的位置關(guān)系,屬于簡單題.4、B【解析】

設(shè)等比數(shù)列的公比為,由等比數(shù)列的定義知與同號,再利用等比中項的性質(zhì)可求出的值.【詳解】設(shè)等比數(shù)列的公比為,則,,.由等比中項的性質(zhì)可得,因此,,故選:B.【點睛】本題考查等比中項性質(zhì)的應(yīng)用,同時也要利用等比數(shù)列的定義判斷出項的符號,考查運算求解能力,屬于中等題.5、A【解析】

設(shè),可得,求得,在中,運用余弦定理,解方程可得所求值.【詳解】設(shè),可得,且,在中,可得,即為,化為,解得舍去),故選.【點睛】本題考查三角形的余弦定理,考查方程思想和運算能力,屬于基礎(chǔ)題.6、C【解析】

根據(jù)特殊角的三角函數(shù)值,得到答案.【詳解】.故選C項.【點睛】本題考查特殊角的三角函數(shù)值,屬于簡單題.7、A【解析】

結(jié)合初等函數(shù)的單調(diào)性,逐項判定,即可求解,得到答案.【詳解】由題意,函數(shù),當(dāng)時,取得最小值,滿足題意;函數(shù)在為單調(diào)遞增函數(shù),所以函數(shù)在區(qū)間無最小值,所以B不正確;函數(shù)在為單調(diào)遞增函數(shù),所以函數(shù)在區(qū)間無最小值,所以C不正確;函數(shù)在為單調(diào)遞增函數(shù),所以函數(shù)在區(qū)間無最小值,所以D不正確.故選:A.【點睛】本題主要考查了函數(shù)的最值問題,其中解答中熟記基本初等函數(shù)的單調(diào)性,合理判定是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】由余弦定理得:,所以,即,解得:或,因為,所以,故選B.考點:余弦定理.9、B【解析】

依據(jù)為周期函數(shù),得到,并項求和,即可求出的值?!驹斀狻恳驗闉橹芷诤瘮?shù),周期為4,所以,,故選B?!军c睛】本題主要考查數(shù)列求和方法——并項求和法的應(yīng)用,以及三角函數(shù)的周期性,分論討論思想,意在考查學(xué)生的推理論證和計算能力。10、A【解析】

直接利用向量平行的充要條件列方程求解即可.【詳解】由可得到.故選A【點睛】利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題可以先算出第行的最后一個數(shù),再從右至左算出第3個數(shù)即可.【詳解】由圖得,第行有個數(shù),故前行一共有個數(shù),即第行最后一個數(shù)為,故第行從右至左的第3個數(shù)為.【點睛】本題主要考查等差數(shù)列求和問題,注意從右至左的第3個數(shù)為最后一個數(shù)減2.12、191【解析】

利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因為,,所以382與1337的最大公約數(shù)為191,故填:.【點睛】本題考查利用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公因數(shù),屬于容易題.13、【解析】

可通過賦值法依次進行推導(dǎo),找出數(shù)列的周期,進而求解【詳解】由,,當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,,當(dāng)故數(shù)列從開始,以3為周期故故答案為:【點睛】本題考查數(shù)列的遞推公式,能根據(jù)遞推公式找出數(shù)列的規(guī)律是解題的關(guān)鍵,屬于中檔題14、【解析】

根據(jù)題意先得出,再畫圖.【詳解】解:設(shè),,,,,則當(dāng)時,處于最低點,則,,可畫圖為:故答案為:【點睛】本題考查了三角模型的實際應(yīng)用,關(guān)鍵是根據(jù)題意建立函數(shù)模型,屬中檔題.15、【解析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因為,所以,即;取連續(xù)的有限項構(gòu)成數(shù)列,不妨令,則,且,則此時必為整數(shù);當(dāng)時,,不符合;當(dāng)時,,符合,此時公比;當(dāng)時,,不符合;當(dāng)時,,不符合;故:公比.【點睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準(zhǔn)確分析.16、【解析】試題分析:由題意得,不妨設(shè)棱長為,如圖,在底面內(nèi)的射影為的中心,故,由勾股定理得,過作平面,則為與底面所成角,且,作于中點,所以,所以,所以與底面所成角的正弦值為.考點:直線與平面所成的角.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由函數(shù)的一段圖象求得、、和的值即可;(2)由,求得的取值范圍,再利用正弦函數(shù)的性質(zhì)求得的最大和最小值即可.【詳解】解:(1)由函數(shù)的一段圖象知,,,,解得,又時,,,,解得,;,函數(shù)的解析式為;(2)當(dāng)時,,令,解得,此時取得最大值為2;令,解得,此時取得最小值為;函數(shù)的值域為.【點睛】本題考查了函數(shù)的圖象和性質(zhì)的應(yīng)用問題,屬于基礎(chǔ)題.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)將所給條件式子兩邊同時平方,利用遞推法可得的表達式,由兩式相減,變形即可證明數(shù)列為等差數(shù)列,進而結(jié)合首項與公差求得的通項公式.(Ⅱ)由(Ⅰ)中可求得.將與代入即可求得數(shù)列的通項公式,利用裂項法即可求得前項和.(Ⅲ)先求得的取值范圍,結(jié)合不等式,即可求得的取值范圍.【詳解】(Ⅰ)因為正項數(shù)列的前項和為,且化簡可得由遞推公式可得兩式相減可得,變形可得即,由正項等比數(shù)列可得所以而當(dāng)時,解得所以數(shù)列是以為首項,以為公差的等差數(shù)列因而(Ⅱ)由(Ⅰ)可知則代入中可得所以(Ⅲ)由(Ⅱ)可知則,所以數(shù)列為單調(diào)遞增數(shù)列,則且當(dāng)時,,即所以因為對一切的恒成立則滿足,解不等式組可得即實數(shù)的取值范圍為【點睛】本題考查了等差數(shù)列通項公式與求和公式的應(yīng)用,裂項求和法的應(yīng)用,數(shù)列的單調(diào)性與不等式關(guān)系,綜合性強,屬于中檔題.19、(1);(2).【解析】

(1)利用二倍角和輔助角公式可將函數(shù)整理為,利用求得結(jié)果;(2)由,結(jié)合的范圍可求得;利用兩角和差正弦公式和二倍角公式化簡已知等式,可求得;分別在和兩種情況下求解出各邊長,從而求得三角形面積.【詳解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即時,則:若,則由正弦定理可得:由余弦定理得:解得:綜上所述,的面積為:【點睛】本題考查正弦型函數(shù)的最小正周期、三角形面積的求解,涉及到正弦定理、余弦定理、三角形面積公式、兩角和差正弦公式、二倍角公式、輔助角公式的應(yīng)用,考查學(xué)生對于三角函數(shù)、三角恒等變換和解三角形知識的掌握.20、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解析】

(1)利用基本元的思想,結(jié)合等差數(shù)列、等比數(shù)列的通項公式、等比中項的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和.【詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an?bn=(2n+1)?3n,前n項和Sn=3?3+5?32+7?33+…+(2n+1)?3n,3Sn=3?32+5?33+7?34+…+(2n+1)?3n+1,兩式相減可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)?3n+1=9+2?(2n+1)?3n+1,化簡可得Sn=n?3n+1.【點睛】本小題主要考查等差數(shù)列,等比數(shù)列通

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論