版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省哈爾濱市122中學2025屆高一數(shù)學第二學期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將數(shù)列中的所有項排成如下數(shù)陣:其中每一行項數(shù)是上一行項數(shù)的倍,且從第二行起每-行均構成公比為的等比數(shù)列,記數(shù)陣中的第列數(shù)構成的數(shù)列為,為數(shù)列的前項和,若,則等于()A. B. C. D.2.光線自點M(2,3)射到N(1,0)后被x軸反射,則反射光線所在的直線方程為()A. B.C. D.3.在等差數(shù)列中,若,則()A. B. C. D.4.把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件“甲分得紅牌”與“乙分得紅牌”是()A.對立事件B.互斥但不對立事件C.不可能事件D.必然事件5.直線與圓相交于點,則()A. B. C. D.6.設,則的取值范圍是()A. B. C. D.7.已知直線和,若,則實數(shù)的值為A.1或 B.或 C.2或 D.或8.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.9.已知兩條不重合的直線和,兩個不重合的平面和,下列四個說法:①若,,,則;②若,,則;③若,,,,則;④若,,,,則.其中所有正確的序號為()A.②④ B.③④ C.④ D.①③10.某班由50個編號為01,02,03,…50的學生組成,現(xiàn)在要選取8名學生參加合唱團,選取方法是從隨機數(shù)表的第1行的第11列開始由左到右依次選取兩個數(shù)字,則該樣本中選出的第8名同學的編號為()495443548217379323783035209623842634916450258392120676572355068877047447672176335025839212067649544354827447A.20 B.25 C.26 D.34二、填空題:本大題共6小題,每小題5分,共30分。11.已知3a=2,則32a=____,log318﹣a=_____12.等差數(shù)列,的前項和分別為,,且,則______.13.根據(jù)黨中央關于“精準脫貧”的要求,石嘴山市農(nóng)業(yè)經(jīng)濟部門派3位專家對大武口、惠農(nóng)2個區(qū)進行調(diào)研,每個區(qū)至少派1位專家,則甲,乙兩位專家派遣至惠農(nóng)區(qū)的概率為_____.14.空間一點到坐標原點的距離是_______.15.在中,,是邊上一點,且滿足,若,則_________.16.已知向量夾角為,且,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(I)求的最小正周期;(II)求在上的最大值與最小值.18.等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.在平面直角坐標系中,點是坐標原點,已知點為線段上靠近點的三等分點.求點的坐標:若點在軸上,且直線與直線垂直,求點的坐標.20.的內(nèi)角的對邊分別為.(1)求證:;(2)在邊上取一點P,若.求證:.21.某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):單價(元)1819202122銷量(冊)6156504845(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?附:,,,.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
先確定為第11行第2個數(shù),由可得,最后根據(jù)從第二行起每一行均構成公比為的等比數(shù)列即可得出結(jié)論.【詳解】∵其中每一行項數(shù)是上一行項數(shù)的倍,第一行有一個數(shù),前10行共計個數(shù),即為第11行第2個數(shù),又∵第列數(shù)構成的數(shù)列為,,∴當時,,∴第11行第1個數(shù)為108,∴,故選:C.【點睛】本題主要考查數(shù)列的性質(zhì)和應用,本題解題的關鍵是為第11行第2個數(shù),屬于中檔題.2、B【解析】試題分析:點關于軸的對稱點,則反射光線即在直線上,由,∴,故選B.考點:直線方程的幾種形式.3、B【解析】
由等差數(shù)列的性質(zhì)可得,則答案易求.【詳解】在等差數(shù)列中,因為,所以.所以.故選B.【點睛】本題考查等差數(shù)列性質(zhì)的應用.在等差數(shù)列中,若,則.特別地,若,則.4、B【解析】試題分析:把黑、紅、白3張紙牌分給甲、乙、丙三人,事件“甲分得紅牌”與“乙分得紅牌”不可能同時發(fā)生,是互斥事件,但除了事件“甲分得紅牌”與“乙分得紅牌”還有“丙分得紅牌”,所以這兩者不是對立事件,答案為B.考點:互斥與對立事件.5、D【解析】
利用直線與圓相交的性質(zhì)可知,要求,只要求解圓心到直線的距離.【詳解】由題意圓,可得圓心,半徑,圓心到直線的距離.則由圓的性質(zhì)可得,所以.故選:D【點睛】本題考查了求弦長、圓的性質(zhì),同時考查了點到直線的距離公式,屬于基礎題.6、B【解析】
由同向不等式的可加性求解即可.【詳解】解:因為,所以,又,,所以,故選:B.【點睛】本題考查了不等式的性質(zhì),屬基礎題.7、C【解析】
利用直線與直線垂直的性質(zhì)直接求解.【詳解】∵直線和,若,∴,得,解得或,∴實數(shù)的值為或.故選:C.【點睛】本題考查直線與直線垂直的性質(zhì)等基礎知識,考查運算求解能力,屬于基礎題.8、B【解析】
過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應用和正弦定理,考查了轉(zhuǎn)化思想,屬中檔題.9、C【解析】
根據(jù)線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關結(jié)論,逐項判斷出各項的真假,即可求出.【詳解】對①,若,,,則或和相交,所以①錯誤;對②,若,,則或,所以②錯誤;對③,根據(jù)面面平行的判定定理可知,只有,,,,且和相交,則,所以③錯誤;對④,根據(jù)面面垂直的性質(zhì)定理可知,④正確.故選:C.【點睛】本題主要考查有關線面平行,面面平行,線面垂直,面面垂直的命題的判斷,意在考查線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關結(jié)論的理解和應用,屬于基礎題.10、D【解析】
利用隨機數(shù)表依次選出8名學生的二位數(shù)的編號,超出范圍的、重復的要舍去.【詳解】從隨機數(shù)表的第1行的第11列開始由左到右依次選取兩個數(shù)字,選出來的8名學生的編號分別為:17,37,(93舍去)23,(78舍去)30,35,20,(96舍去)(23舍去)(84舍去)26,1;∴樣本選出來的第8名同學的編號為1.故選:D【點睛】本題考查了利用隨機數(shù)表法求抽樣編號的問題,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、42.【解析】
由已知結(jié)合指數(shù)式的運算性質(zhì)求解,把化為對數(shù)式得到,代入,再由對數(shù)的運算性質(zhì)求解.【詳解】∵,∴,由,得,∴.故答案為:,.【點睛】本題考查指數(shù)式與對數(shù)式的互化,考查對數(shù)的運算性質(zhì),屬于基礎題.12、【解析】
取,代入計算得到答案.【詳解】,當時故答案為【點睛】本題考查了前項和和通項的關系,取是解題的關鍵.13、【解析】
將所有的基本事件全部列舉出來,確定基本事件的總數(shù),并確定所求事件所包含的基本事件數(shù),然后利用古典概型的概率公式求出答案.【詳解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口區(qū)調(diào)研的專家),共個,因此,所求的事件的概率為,故答案為.【點睛】本題考查古典概型概率的計算,解決這類問題的關鍵在于確定基本事件的數(shù)目,一般利用枚舉法和數(shù)狀圖法來列舉,遵循不重不漏的基本原則,考查計算能力,屬于基礎題.14、【解析】
直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數(shù)學運算能力.15、【解析】
記,則,則可求出,設,,得,,故結(jié)合余弦定理可得,解得的值,即可求,進而求的值.【詳解】根據(jù)題意,不妨設,,則,因,所以,設,由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【點睛】本題主要考查了余弦定理在解三角形中的綜合應用以及同角三角函數(shù)的基本關系式,屬于中檔題.16、【解析】試題分析:的夾角,,,,.考點:向量的運算.【思路點晴】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標運算公式,涉及幾何圖形的問題,先建立適當?shù)钠矫嬷苯亲鴺讼担善鸬交睘楹喌拿钣?利用向量夾角公式、模公式及向量垂直的充要條件,可將有關角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(I);(II)3,.【解析】
(I)利用降次公式和輔助角公式化簡解析式,由此求得的最小正周期.(II)根據(jù)函數(shù)的解析式,以及的取值范圍,結(jié)合三角函數(shù)值域的求法,求得在區(qū)間上的最大值與最小值.【詳解】(I)的最小正周期.(Ⅱ),.【點睛】本小題主要考查降次公式和輔助角公式,考查三角函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.18、(1);(2).【解析】
(1)設等差數(shù)列的公差為,根據(jù)題中條件列有關和的方程組,求出和,即可求出等差數(shù)列的通項公式;(2)將數(shù)列的通項公式裂項,然后利用裂項求和法求出數(shù)列的前項和?!驹斀狻浚?)設等差數(shù)列的公差為,由可得,解得,;(2),?!军c睛】本題考查等差數(shù)列通項公式、裂項求和法,在求解等差數(shù)列的通項公式時,一般利用方程思想求出等差數(shù)列的首項和公差求出通項公式,在求和時要根據(jù)數(shù)列通項的基本結(jié)構選擇合適的求和方法對數(shù)列求和,屬于??碱}型,屬于中等題。19、(1)(2)【解析】
(1)由題意利用線段的定比分點坐標公式,兩個向量坐標形式的運算法則,求出點P的坐標.(2)由題意利用兩個向量垂直的性質(zhì),兩個向量坐標形式的運算法則,求出點Q的坐標.【詳解】設,因為,所以,又,所以,解得,從而.設,所以,由已知直線與直線垂直,所以則,解得,所以.【點睛】本題主要考查了線段的定比分點坐標公式,兩個向量垂直的性質(zhì),兩個向量坐標形式的運算,屬于基礎題,著重考查了推理與運算能力.20、(1)詳見解析;(2)詳見解析.【解析】
(1)余弦定理的證明其實在課本就直接給出過它向量方法的證明,通過,等向量模長相等就可,當然我們還可以通過坐標的運算完成(如方法二)(2)通過點P,將三角形分割,這種題中多注意幾個相等(公共邊相等,)我們可以得到相對應的等量關系,完成本題.【詳解】(1)證法一:如圖,即證法二:已知中所對邊分別為,以為原點,所在直線為軸建立直角坐標系,則,所以(2)令,由余弦定理得:,因為所以所以所以【點睛】(1)向量既有大小又有方向.在幾何中是一種很重要的工具,比如三角形中,三邊有大小,角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版現(xiàn)代化辦公室租賃場地合同樣本3篇
- 二零二五版精制粉原料供應鏈風險管理合同3篇
- 二零二五版地震監(jiān)測基站場地租賃與應急救援合同3篇
- 2025年度醫(yī)療健康產(chǎn)業(yè)園區(qū)承包經(jīng)營合同范本3篇
- 二零二五版溫泉度假酒店SPA服務人員勞動合同3篇
- 二零二五年度離婚經(jīng)濟補償協(xié)議范本及調(diào)解服務合同3篇
- 二零二五年度能源項目合作開發(fā)PPP模式合同范本3篇
- 物業(yè)管理公司2025年度招投標代理合同3篇
- 二零二五年度車位租賃合同:住宅小區(qū)車位使用權協(xié)議2篇
- 2025廠房買賣合同模板:高端裝備制造廠房交易3篇
- 煤焦化焦油加工工程設計規(guī)范
- 全國醫(yī)療服務價格項目規(guī)范2022年版價格測算表
- 2024年人教版小學三年級信息技術(下冊)期末試卷附答案
- 中國子宮內(nèi)膜增生管理指南(2022)解讀
- 應征公民政治考核表(含各種附表)
- 2024年第九屆“鵬程杯”五年級語文邀請賽試卷
- 名師成長論名師成長的模式、機制和規(guī)律研究
- FSSC22000V6.0變化點和文件修改建議
- 2024年高一年級上冊語文期末復習:語言文字運用Ⅰ刷題練習題(含答案)
- 新蘇教版三年級下冊科學全冊知識點(背誦用)
- 鄉(xiāng)鎮(zhèn)風控維穩(wěn)應急預案演練
評論
0/150
提交評論