2024屆湖南省長沙市長郡湘府中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第1頁
2024屆湖南省長沙市長郡湘府中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第2頁
2024屆湖南省長沙市長郡湘府中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第3頁
2024屆湖南省長沙市長郡湘府中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第4頁
2024屆湖南省長沙市長郡湘府中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆湖南省長沙市長郡湘府中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知集合,集合,則()A. B. C. D.2.如圖,正方體ABCD-A1B1C1D1的棱長為2,E是棱AB的中點(diǎn),F(xiàn)是側(cè)面AA1D1D內(nèi)一點(diǎn),若EF∥平面BB1D1D,則EF長度的范圍為()A. B. C. D.3.在四邊形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共線,則四邊形ABCD為()A.平行四邊形 B.矩形 C.梯形 D.菱形4.過兩點(diǎn)A,B(,的直線傾斜角是,則的值是()A.B.3C.1D.5.根據(jù)頻數(shù)分布表,可以估計(jì)在這堆蘋果中,質(zhì)量大于130克的蘋果數(shù)約占蘋果總數(shù)的()分組頻數(shù)13462A. B. C. D.6.觀察下列幾何體各自的三視圖,其中有且僅有兩個(gè)視圖完全相同的是()①正方體②圓錐③正三棱柱④正四棱錐A.①② B.②④ C.①③ D.①④7.在中,,則此三角形解的情況是()A.一解 B.兩解 C.一解或兩解 D.無解8.已知,,,則與的夾角為()A. B. C. D.9.已知正方體的個(gè)頂點(diǎn)中,有個(gè)為一側(cè)面是等邊三角形的正三棱錐的頂點(diǎn),則這個(gè)正三棱錐與正方體的全面積之比為()A. B. C. D.10.直線與直線平行,則()A. B.或 C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為.12.函數(shù)的最小正周期為________13.已知不等式的解集為,則________.14.若,且,則=_______.15.已知函數(shù),下列結(jié)論中:函數(shù)關(guān)于對稱;函數(shù)關(guān)于對稱;函數(shù)在是增函數(shù),將的圖象向右平移可得到的圖象.其中正確的結(jié)論序號為______.16.如圖,在直角梯形中,//是線段上一動(dòng)點(diǎn),是線段上一動(dòng)點(diǎn),則的最大值為________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓圓心坐標(biāo)為點(diǎn)為坐標(biāo)原點(diǎn),軸、軸被圓截得的弦分別為、.(1)證明:的面積為定值;(2)設(shè)直線與圓交于兩點(diǎn),若,求圓的方程.18.已知,函數(shù)(其中),且圖象在軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為,并過點(diǎn).(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)增區(qū)間.19.某校高二年級共有800名學(xué)生參加2019年全國高中數(shù)學(xué)聯(lián)賽江蘇賽區(qū)初賽,為了解學(xué)生成績,現(xiàn)隨機(jī)抽取40名學(xué)生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:分組頻數(shù)⑴試估計(jì)該年級成績不低于90分的學(xué)生人數(shù);⑵成績在的5名學(xué)生中有3名男生,2名女生,現(xiàn)從中選出2名學(xué)生參加訪談,求恰好選中一名男生一名女生的概率.20.某校全體教師年齡的頻率分布表如表1所示,其中男教師年齡的頻率分布直方圖如圖2所示.已知該校年齡在歲以下的教師中,男女教師的人數(shù)相等.表1:(1)求圖2中的值;(2)若按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動(dòng),求男女教師抽取的人數(shù);(3)若從年齡在的教師中隨機(jī)抽取2人,參加重陽節(jié)活動(dòng),求至少有1名女教師的概率.21.已知邊長為2的等邊,是邊的中點(diǎn),以為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)得對應(yīng),與所在直線交于.(1)任意旋轉(zhuǎn)角,判斷是否是定值.若是,求此定值;若不是,說明理由.(2)求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

先化簡集合,再利用交集運(yùn)算法則求.【詳解】,,,故選:D.【點(diǎn)睛】本題考查集合的運(yùn)算,屬于基礎(chǔ)題.2、C【解析】

過作,交于點(diǎn),交于,根據(jù)線面垂直關(guān)系和勾股定理可知;由平面可證得面面平行關(guān)系,利用面面平行性質(zhì)可證得為中點(diǎn),從而得到最小值為重合,最大值為重合,計(jì)算可得結(jié)果.【詳解】過作,交于點(diǎn),交于,則底面平面,平面,平面平面,又平面平面又平面平面,平面為中點(diǎn)為中點(diǎn),則為中點(diǎn)即在線段上,,則線段長度的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查立體幾何中線段長度取值范圍的求解,關(guān)鍵是能夠確定動(dòng)點(diǎn)的具體位置,從而找到臨界狀態(tài);本題涉及到立體幾何中線面平行的性質(zhì)、面面平行的判定與性質(zhì)等定理的應(yīng)用.3、C【解析】∵=++=-8a-2b=2,與不平行,∴四邊形ABCD為梯形.4、C【解析】試題分析:根據(jù)直線斜率的計(jì)算式有,解得.考點(diǎn):直線斜率的計(jì)算式.5、C【解析】

根據(jù)頻數(shù)分布表計(jì)算出質(zhì)量大于130克的蘋果的頻率,由此得出正確選項(xiàng).【詳解】根據(jù)頻數(shù)分布表可知,所以質(zhì)量大于克的蘋果數(shù)約占蘋果總數(shù)的.故選:C【點(diǎn)睛】本小題主要考查頻數(shù)分析表的閱讀與應(yīng)用,屬于基礎(chǔ)題.6、B【解析】

正方體的三個(gè)視圖都相同,①不符合;圓錐的正視圖和側(cè)視圖相同都是三角形,俯視圖為圓,②符合;正三棱柱的俯視圖是等邊三角形,正視圖和側(cè)視圖都是長方形,但是長不同寬相同,③不符合;正四棱錐的俯視圖是正方形,正視圖和側(cè)視圖都是相同的等腰三角形,④符合,故選B.7、B【解析】由題意知,,,,∴,如圖:∵,∴此三角形的解的情況有2種,故選B.8、C【解析】

設(shè)與的夾角為,計(jì)算出、、的值,再利用公式結(jié)合角的取值范圍可求出的值.【詳解】設(shè)與的夾角為,則,,,另一方面,,,,因此,,,因此,,故選C.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積計(jì)算平面向量的夾角,解題的關(guān)鍵就是計(jì)算出、、的值,考查計(jì)算能力,屬于中等題.9、A【解析】所求的全面積之比為:,故選A.10、B【解析】

兩直線平行,斜率相等;按,和三類求解.【詳解】當(dāng)即時(shí),兩直線為,,兩直線不平行,不符合題意;當(dāng)時(shí),兩直線為,兩直線不平行,不符合題意;當(dāng)即時(shí),直線的斜率為,直線的斜率為,因?yàn)閮芍本€平行,所以,解得或,故選B.【點(diǎn)睛】本題考查直線平行的斜率關(guān)系,注意斜率不存在和斜率為零的情況.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用商數(shù)關(guān)系式化簡即可.【詳解】,故填.【點(diǎn)睛】利用同角的三角函數(shù)的基本關(guān)系式可以化簡一些代數(shù)式,常見的方法有:(1)弦切互化法:即把含有正弦和余弦的代數(shù)式化成關(guān)于正切的代數(shù)式,也可以把含有正切的代數(shù)式化為關(guān)于余弦和正弦的代數(shù)式;(2)“1”的代換法:有時(shí)可以把看成.12、【解析】

根據(jù)的最小正周期判斷即可.【詳解】因?yàn)榈淖钚≌芷诰鶠?故的最小正周期為.故答案為:【點(diǎn)睛】本題主要考查了正切余切函數(shù)的周期,屬于基礎(chǔ)題型.13、-7【解析】

結(jié)合一元二次不等式和一元二次方程的性質(zhì),列出方程組,求得的值,即可得到答案.【詳解】由不等式的解集為,可得,解得,所以.故答案為:.【點(diǎn)睛】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質(zhì),其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】

由的值及,可得的值,計(jì)算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,熟練掌握其基本關(guān)系是解題的關(guān)鍵.15、【解析】

把化成的型式即可?!驹斀狻坑深}意得所以對稱軸為,對,當(dāng)時(shí),對稱中心為,對。的增區(qū)間為,對向右平移得。錯(cuò)【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì),三角函數(shù)變換,意在考查學(xué)生對三角函數(shù)的圖像與性質(zhì)的掌握情況。16、2【解析】

建立平面直角坐標(biāo)系,得到相應(yīng)點(diǎn)的坐標(biāo)及向量的坐標(biāo),把,利用向量的數(shù)量積轉(zhuǎn)化為的函數(shù),即可求解.【詳解】建立如圖所示的平面直角坐標(biāo)系,因?yàn)椋?,所?因?yàn)?,,所?因?yàn)?,所以?dāng)時(shí),取得最大值,最大值為.故答案為:.【點(diǎn)睛】本題主要考查了平面向量的線性運(yùn)算,以及向量的數(shù)量積的運(yùn)算的應(yīng)用,其中解答中建立平面直角坐標(biāo)系,結(jié)合向量的線性運(yùn)算和數(shù)量積的運(yùn)算,得到的函數(shù)關(guān)系式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)利用幾何條件可知,為直角三角形,且圓過原點(diǎn),所以得知三角形兩直角邊邊長,求得面積;(2)由及原點(diǎn)O在圓上,知OCMN,所以,求出的值,再利用直線與圓的位置關(guān)系判斷檢驗(yàn),符合題意的解,最后寫出圓的方程.【詳解】(1)因?yàn)檩S、軸被圓截得的弦分別為、,所以經(jīng)過,又為中點(diǎn),所以,所以,所以的面積為定值.(2)因?yàn)橹本€與圓交于兩點(diǎn),,所以的中垂線經(jīng)過,且過,所以的方程,所以,所以當(dāng)時(shí),有圓心,半徑,所以圓心到直線的距離為,所以直線與圓交于點(diǎn)兩點(diǎn),故成立;當(dāng)時(shí),有圓心,半徑,所以圓心到直線的距離為,所以直線與圓不相交,故(舍去),綜上所述,圓的方程為.【點(diǎn)睛】本題通過直線與圓的有關(guān)知識(shí),考查學(xué)生直觀想象和邏輯推理能力.解題注意幾何條件的運(yùn)用可以簡化運(yùn)算.18、(1);(2).【解析】

(1)根據(jù)向量的數(shù)量積得,結(jié)合,即可求解;(2)令即可求得增區(qū)間.【詳解】(1)由題圖象在軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為,并過點(diǎn)所以,解得,,解得:,所以;(2)令函數(shù)的單調(diào)增區(qū)間為.【點(diǎn)睛】此題考查根據(jù)平面向量的數(shù)量積,求函數(shù)解析式,根據(jù)三角函數(shù)的頂點(diǎn)坐標(biāo)和曲線上的點(diǎn)的坐標(biāo)求參數(shù),利用整體代入法求單調(diào)區(qū)間.19、(1)300人;(2)【解析】

(1)由頻數(shù)分布表可得40人中成績不低于90分的學(xué)生人數(shù)為15人,由此可計(jì)算出該年級成績不低于90分的學(xué)生人數(shù);(2)根據(jù)題意寫出所有的基本事件,確定基本事件的個(gè)數(shù),即可計(jì)算出恰好選中一名男生一名女生的概率.【詳解】⑴40名學(xué)生中成績不低于90分的學(xué)生人數(shù)為15人;所以估計(jì)該年級成績不低于90分的學(xué)生人數(shù)為⑵分別記男生為1,2,3號,女生為4,5號,從中選出2名學(xué)生,有如下基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)因此,共有10個(gè)基本事件,上述10個(gè)基本事件發(fā)生的可能性相同,且只有6個(gè)基本事件是選中一名男生一名女生(記為事件),即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)∴【點(diǎn)睛】本題考查頻率分布表以及古典概型的概率計(jì)算,,考查學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.20、(1);(2)見解析;(3)【解析】

由男教師年齡的頻率分布直方圖總面積為1求得答案;由男教師年齡在的頻率可計(jì)算出男教師人數(shù),從而女教師人數(shù)也可求得,于是通過分層抽樣的比例關(guān)系即可得到答案;年齡在的教師中,男教師為(人),則女教師為1人,從而可計(jì)算出基本事件的概率.【詳解】(1)由男教師年齡的頻率分布直方圖得解得(2)該校年齡在歲以下的男女教師人數(shù)相等,且共14人,年齡在歲以下的男教師共7人由(1)知,男教師年齡在的頻率為男教師共有(人),女教師共有(人)按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動(dòng),則男教師抽取的人數(shù)為(人),女教師抽取的人數(shù)為人(3)年齡在的教師中,男教師為(人),則女教師為1人從年齡在的教師中隨機(jī)抽取2人,共有10種可能情形其中至少有1名女教師的有4種情形故所求概率為【點(diǎn)睛】本題主要考查頻率分布直方圖,分層抽樣,古典概率的計(jì)算,意在考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論