版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
海南省三亞市達(dá)標(biāo)名校2023-2024學(xué)年數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列滿足,(且),且數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,又,則A. B. C. D.2.若,則函數(shù)的最小值是()A. B. C. D.3.若各項為正數(shù)的等差數(shù)列的前n項和為,且,則()A.9 B.14 C.7 D.184.如果a<b<0,則下列不等式成立的是()A. B.a(chǎn)2<b2 C.a(chǎn)3<b3 D.a(chǎn)c2<bc25.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.6.在中,a、b分別為內(nèi)角A、B的對邊,如果,,,則()A. B. C. D.7.我國著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休,在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如函數(shù)的部分圖象大致是()A. B.C. D.8.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為3,2,則輸出v的值為A.35 B.20 C.18 D.99.化簡:()A. B. C. D.10.某公司的班車在和三個時間點發(fā)車.小明在至之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時刻是隨機(jī)的,則他等車時間不超過分鐘的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系xOy中,若直線與直線平行,則實數(shù)a的值為______.12.在中,角所對的邊分別為,,則____13.若等比數(shù)列的各項均為正數(shù),且,則等于__________.14.在中,為上的一點,且,是的中點,過點的直線,是直線上的動點,,則_________.15.記為等差數(shù)列的前項和,若,則___________.16.若正四棱錐的側(cè)棱長為,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,是第四象限角,求和的值.18.從含有兩件正品和一件次品的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求:(1)一切可能的結(jié)果組成的基本事件空間.(2)取出的兩件產(chǎn)品中恰有一件次品的概率19.如圖,直三棱柱中,,,,,為垂足.(1)求證:(2)求三棱錐的體積.20.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.21.設(shè)函數(shù)(1)若對于一切實數(shù)恒成立,求的取值范圍;(2)若對于恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)已知條件可以推出,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,因此去絕對值可以得到,,利用累加法繼而算出結(jié)果.【詳解】,即,或,又,.?dāng)?shù)列為遞增數(shù)列,數(shù)列為遞減數(shù)列,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,..故選A.【點睛】本題主要考查了通過遞推式求數(shù)列的通項公式,數(shù)列單調(diào)性的應(yīng)用,以及并項求和法的應(yīng)用。2、B【解析】
直接用均值不等式求最小值.【詳解】當(dāng)且僅當(dāng),即時,取等號.故選:B【點睛】本題考查利用均值不等式求函數(shù)最小值,屬于基礎(chǔ)題.3、B【解析】
根據(jù)等差中項定義及條件式,先求得.再由等差數(shù)列的求和公式,即可求得的值.【詳解】數(shù)列為各項是正數(shù)的等差數(shù)列則由等差中項可知所以原式可化為,所以由等差數(shù)列求和公式可得故選:B【點睛】本題考查了等差中項的性質(zhì),等差數(shù)列前n項和的性質(zhì)及應(yīng)用,屬于基礎(chǔ)題.4、C【解析】
根據(jù)a、b的范圍,取特殊值帶入判斷即可.【詳解】∵a<b<0,不妨令a=﹣2,b=﹣1,則,a2>b2所以A、B不成立,當(dāng)c=0時,ac2=bc2所以D不成立,故選:C.【點睛】本題考查了不等式的性質(zhì),考查特殊值法進(jìn)行排除的應(yīng)用,屬于基礎(chǔ)題.5、A【解析】
由正弦定理可得,再結(jié)合余弦定理求解即可.【詳解】解:因為在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點睛】本題考查了正弦定理及余弦定理,重點考查了運算能力,屬基礎(chǔ)題.6、A【解析】
先求出再利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:A.【點睛】本題注意考查正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.7、D【解析】
根據(jù)函數(shù)的性質(zhì)以及特殊位置即可利用排除法選出正確答案.【詳解】因為函數(shù)定義域為,關(guān)于原點對稱,而,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點對稱,故排除A,C;又因為,故排除B.故選:D.【點睛】本題主要考查函數(shù)圖象的識別,涉及余弦函數(shù)性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】試題分析:模擬算法:開始:輸入成立;,成立;,成立;,不成立,輸出.故選C.考點:1.數(shù)學(xué)文化;2.程序框圖.9、A【解析】
.故選A.【點睛】考查向量數(shù)乘和加法的幾何意義,向量加法的運算.10、A【解析】
根據(jù)題意得小明等車時間不超過分鐘的總的時間段,再由比值求得.【詳解】小明等車時間不超過分鐘,則他需在至到,或至到,共計分鐘,所以概率故選A.【點睛】本題考查幾何概型,關(guān)鍵找到滿足條件的時間段,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
由,解得,經(jīng)過驗證即可得出.【詳解】由,解得.經(jīng)過驗證可得:滿足直線與直線平行,則實數(shù).故答案為:1.【點睛】本題考查直線的平行與斜率之間的關(guān)系,考查推理能力與計算能力,屬于基礎(chǔ)題.12、【解析】
利用正弦定理將邊角關(guān)系式中的邊都化成角,再結(jié)合兩角和差公式進(jìn)行整理,從而得到.【詳解】由正弦定理可得:即:本題正確結(jié)果:【點睛】本題考查李用正弦定理進(jìn)行邊角關(guān)系式的化簡問題,屬于常規(guī)題.13、50【解析】由題意可得,=,填50.14、【解析】
用表示出,由對應(yīng)相等即可得出.【詳解】因為,所以解得得.【點睛】本題主要考查了平面向量的基本定理,以及向量的三角形法則,平面上任意不共線的一組向量可以作為一組基底.15、100【解析】
根據(jù)題意可求出首項和公差,進(jìn)而求得結(jié)果.【詳解】得【點睛】本題考點為等差數(shù)列的求和,為基礎(chǔ)題目,利用基本量思想解題即可,充分記牢等差數(shù)列的求和公式是解題的關(guān)鍵.16、【解析】
過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),設(shè)正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【詳解】過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),則為側(cè)面與底面所成角的平面角,即,設(shè)正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【點睛】本題主要考查空間線面角的計算,考查棱錐體積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、,【解析】
利用誘導(dǎo)公式可求的值,根據(jù)是第四象限角可求的值,最后根據(jù)三角函數(shù)的基本關(guān)系式可求的值,根據(jù)誘導(dǎo)公式及倍角公式可求的值.【詳解】,又是第四象限角,所以,所以,.【點睛】本題考查同角的三角函數(shù)的基本關(guān)系式、誘導(dǎo)公式以及二倍角公式,此題屬于基礎(chǔ)題.18、(1)和;(2)【解析】
(1)注意先后順序以及是不放回的抽取;(2)在所有可能的事件中尋找符合要求的事件,然后利用古典概型概率計算公式求解即可.【詳解】(1)每次取出一個,取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個,即和其中小括號內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)品(2)用A表示“取出的兩種中,恰好有一件次品”這一事件,則∴事件A由4個基本事件組成,因而,=.【點睛】本題考查掛古典概型的基本概率計算,難度較易.對于放回或不放回的問題,一定要注意區(qū)分其中的不同.19、(1)見證明;(2)【解析】
(1)先證得平面,由此證得,結(jié)合題意所給已知條件,證得平面,從而證得.(2)首先證得平面,由計算出三棱錐的體積.【詳解】(1)證明:,∴,又,從而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【點睛】本小題主要考查線線垂直的證明,考查線面垂直的判定定理的運用,考查三棱錐體積的求法,屬于中檔題.20、(Ⅰ)(Ⅱ)().【解析】試題分析:(Ⅰ)運用兩角和的正弦公式對f(x)化簡整理,由周期公式求ω的值;(Ⅱ)根據(jù)函數(shù)y=sinx的單調(diào)遞增區(qū)間對應(yīng)求解即可.試題解析:(Ⅰ)因為,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調(diào)遞增區(qū)間為().由,得.所以的單調(diào)遞增區(qū)間為().【考點】兩角和的正弦公式、周期公式、三角函數(shù)的單調(diào)性.【名師點睛】三角函數(shù)的單調(diào)性:1.三角函數(shù)單調(diào)區(qū)間的確定,一般先將函數(shù)式化為基本三角函數(shù)標(biāo)準(zhǔn)式,然后通過同解變形或利用數(shù)形結(jié)合方法求解.關(guān)于復(fù)合函數(shù)的單調(diào)性的求法;2.利用三角函數(shù)的單調(diào)性比較兩個同名三角函數(shù)值的大小,必須先看兩角是否同屬于這一函數(shù)的同一單調(diào)區(qū)間內(nèi),不屬于的,可先化至同一單調(diào)區(qū)間內(nèi).若不是同名三角函數(shù),則應(yīng)考慮化為同名三角函數(shù)或用差值法(例如與0比較,與1比較等)求解.21、(1)(2)【解析】
(1)由不等式恒成立,結(jié)合二次函數(shù)的性質(zhì),分類討論,即可求解;(2)要使對于恒成立,整理得只需恒成立,結(jié)合基本不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度果苗采購協(xié)議樣本版B版
- 服務(wù)采購合同保密義務(wù)說明規(guī)定
- 婚姻協(xié)議書范本婚前財產(chǎn)協(xié)議模板
- 保障學(xué)生安全從我做起
- 深入了解食堂采購合同
- 建筑通風(fēng)材料項目合同模板
- 退款協(xié)議合同模板
- 房屋使用權(quán)互換合同書
- 購銷貸款協(xié)議樣本
- 銀行法律咨詢顧問服務(wù)商合同
- NB-T47003.1-2009鋼制焊接常壓容器(同JB-T4735.1-2009)
- 聚焦高質(zhì)量+探索新高度+-2025屆高考政治復(fù)習(xí)備考策略
- 惠州市惠城區(qū)2022-2023學(xué)年七年級上學(xué)期期末教學(xué)質(zhì)量檢測數(shù)學(xué)試卷
- 北京市西城區(qū)2022-2023學(xué)年七年級上學(xué)期期末英語試題【帶答案】
- ISO45001-2018職業(yè)健康安全管理體系之5-4:“5 領(lǐng)導(dǎo)作用和工作人員參與-5.4 工作人員的協(xié)商和參與”解讀和應(yīng)用指導(dǎo)材料(2024A0-雷澤佳)
- 看圖猜成語共876道題目動畫版
- 小學(xué)二年級上冊數(shù)學(xué)-數(shù)角的個數(shù)專項練習(xí)
- 曲式與作品分析智慧樹知到期末考試答案章節(jié)答案2024年蘭州文理學(xué)院
- 園林設(shè)施維護(hù)方案
- 特種設(shè)備使用單位日管控、周排查、月調(diào)度示范表
- 供應(yīng)鏈成本控制與降本增效
評論
0/150
提交評論