江西省贛州市信豐縣信豐中學(xué)2024年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
江西省贛州市信豐縣信豐中學(xué)2024年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
江西省贛州市信豐縣信豐中學(xué)2024年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
江西省贛州市信豐縣信豐中學(xué)2024年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
江西省贛州市信豐縣信豐中學(xué)2024年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省贛州市信豐縣信豐中學(xué)2024年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某程序框圖如圖所示,該程序運行后輸出的值是()A. B. C. D.2.若直線與圓相切,則()A. B. C. D.或3.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.6 B.4C. D.4.將數(shù)列中的所有項排成如下數(shù)陣:其中每一行項數(shù)是上一行項數(shù)的倍,且從第二行起每-行均構(gòu)成公比為的等比數(shù)列,記數(shù)陣中的第列數(shù)構(gòu)成的數(shù)列為,為數(shù)列的前項和,若,則等于()A. B. C. D.5.的內(nèi)角的對邊分別為,面積為,若,則外接圓的半徑為()A. B. C. D.6.過兩點A(4,y),B(2,-3)的直線的傾斜角是135°,則y等于()A.1 B.5 C.-1 D.-57.已知等差數(shù)列的前項的和為,若,則等于()A.81 B.90 C.99 D.1808.矩形中,,若在該矩形內(nèi)隨機投一點,那么使得的面積不大于3的概率是()A. B. C. D.9.終邊在軸上的角的集合()A. B.C. D.10.已知,的線性回歸直線方程為,且,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的為A.變量,之間呈現(xiàn)正相關(guān)關(guān)系 B.可以預(yù)測,當(dāng)時,C. D.由表格數(shù)據(jù)可知,該回歸直線必過點二、填空題:本大題共6小題,每小題5分,共30分。11.在空間直角坐標(biāo)系中,三棱錐的各頂點都在一個半徑為的球面上,為球心,,,,,則球的體積與三棱錐的體積之比是_____.12.一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是__________.13.若,且,則的最小值為_______.14.已知,則的取值范圍是_______;15.設(shè)集合,它共有個二元子集,如、、等等.記這個二元子集為、、、、,設(shè),定義,則_____.(結(jié)果用數(shù)字作答)16.__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.如圖是函數(shù)的部分圖象.(1)求函數(shù)的表達式;(2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和;(3)把函數(shù)的圖象的周期擴大為原來的兩倍,然后向右平移個單位,再把縱坐標(biāo)伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.19.設(shè)和是兩個等差數(shù)列,記(),其中表示,,這個數(shù)中最大的數(shù).已知為數(shù)列的前項和,,.(1)求數(shù)列的通項公式;(2)若,求,,的值,并求數(shù)列的通項公式;(3)求數(shù)列前項和.20.四棱錐中,,,底面,,直線與底面所成的角為,、分別是、的中點.(1)求證:直線平面;(2)若,求證:直線平面;(3)求棱錐的體積.21.已知數(shù)列滿足:,,數(shù)列滿足:().(1)證明:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和,并比較與的大小.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

模擬程序運行后,可得到輸出結(jié)果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結(jié)構(gòu),1),判斷為否,進入循環(huán)結(jié)構(gòu),2),判斷為否,進入循環(huán)結(jié)構(gòu),3),判斷為否,進入循環(huán)結(jié)構(gòu),……9),判斷為否,進入循環(huán)結(jié)構(gòu),10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結(jié)果時,常模擬程序運行以得到結(jié)論.2、D【解析】

本題首先可根據(jù)圓的方程確定圓心以及半徑,然后根據(jù)直線與圓相切即可列出算式并通過計算得出結(jié)果?!驹斀狻坑深}意可知,圓方程為,所以圓心坐標(biāo)為,圓的半徑,因為直線與圓相切,所以圓心到直線距離等于半徑,即解得或,故選D?!军c睛】本題考查根據(jù)直線與圓相切求參數(shù),考查根據(jù)圓的方程確定圓心與半徑,若直線與圓相切,則圓心到直線距離等于半徑,考查推理能力,是簡單題。3、A【解析】該立方體是正方體,切掉一個三棱柱,所以體積為,故選A。點睛:本題考查三視圖還原,并求體積。此類題關(guān)鍵就是三視圖的還原,還原過程中,本題采取切割法處理,有圖可知,該立方體應(yīng)該是正方體進行切割產(chǎn)生的,所以我們在畫圖的過程在,對正方體進行切割比較即可。4、C【解析】

先確定為第11行第2個數(shù),由可得,最后根據(jù)從第二行起每一行均構(gòu)成公比為的等比數(shù)列即可得出結(jié)論.【詳解】∵其中每一行項數(shù)是上一行項數(shù)的倍,第一行有一個數(shù),前10行共計個數(shù),即為第11行第2個數(shù),又∵第列數(shù)構(gòu)成的數(shù)列為,,∴當(dāng)時,,∴第11行第1個數(shù)為108,∴,故選:C.【點睛】本題主要考查數(shù)列的性質(zhì)和應(yīng)用,本題解題的關(guān)鍵是為第11行第2個數(shù),屬于中檔題.5、A【解析】

出現(xiàn)面積,可轉(zhuǎn)化為觀察,和余弦定理很相似,但是有差別,差別就是條件是形式,而余弦定理中是形式,但是我們可以注意到:,所以可以完成本題.【詳解】由,所以在三角形中,再由正弦定理所以答案選擇A.【點睛】本題很靈活,在常數(shù)4的處理問題上有點巧妙,然后再借助余弦定理及正弦定理,難度較大.6、D【解析】∵過兩點A(4,y),B(2,-3)的直線的傾斜角是135°,∴,解得。選D。7、B【解析】

根據(jù)已知得到的值,利用等差數(shù)列前項和公式以及等差數(shù)列下標(biāo)和的性質(zhì),求得的值.【詳解】依題意,所以,故選B.【點睛】本小題主要考查等差數(shù)列的性質(zhì),考查等差數(shù)列前項和的計算,屬于基礎(chǔ)題.8、C【解析】

先求出的點的軌跡(一條直線),然后由面積公式可知時點所在區(qū)域,計算其面積,利用幾何概型概率公式計算概率.【詳解】設(shè)到的距離為,,則,如圖,設(shè),則點在矩形內(nèi),,,∴所求概率為.故選C.【點睛】本題考查幾何概型概率.解題關(guān)鍵是確定符合條件點所在區(qū)域及其面積.9、D【解析】

根據(jù)軸線角的定義即可求解.【詳解】A項,是終邊在軸正半軸的角的集合;B項,是終邊在軸的角的集合;C項,是終邊在軸正半軸的角的集合;D項,是終邊在軸的角的集合;綜上,D正確.故選:D【點睛】本題主要考查了軸線角的判斷,屬于基礎(chǔ)題.10、C【解析】

A中,根據(jù)線性回歸直線方程中回歸系數(shù)0.82>0,判斷x,y之間呈正相關(guān)關(guān)系;B中,利用回歸方程計算x=5時的值即可預(yù)測結(jié)果;C中,計算、,代入回歸直線方程求得m的值;D中,由題意知m=1.8時求出、,可得回歸直線方程過點(,).【詳解】已知線性回歸直線方程為0.82x+1.27,0.82>0,所以變量x,y之間呈正相關(guān)關(guān)系,A正確;計算x=5時,0.82×5+1.27=5.37,即預(yù)測當(dāng)x=5時y=5.37,B正確;(0+1+2+3)=1.5,(0.8+m+3.1+4.3),代入回歸直線方程得0.82×1.5+1.27,解得m=1.8,∴C錯誤;由題意知m=1.8時,1.5,2.5,所以回歸直線方程過點(1.5,2.5),D正確.故選C.【點睛】本題考查了線性回歸方程的概念與應(yīng)用問題,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先根據(jù)坐標(biāo)求出三棱錐的體積,再計算出球的體積即可.【詳解】有題知建立空間直角坐標(biāo)系,如圖所示由圖知:平面,...故答案為:【點睛】本題主要考查三棱錐的外接球,根據(jù)題意建立空間直角坐標(biāo)系為解題的關(guān)鍵,屬于中檔題.12、6【解析】

由題得x=7,再利用中位數(shù)的公式求這組數(shù)據(jù)的中位數(shù).【詳解】因為數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,所以,則這組數(shù)據(jù)的中位數(shù)是.故答案為6【點睛】本題主要考查眾數(shù)的概念和中位數(shù)的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.13、【解析】

將變換為,展開利用均值不等式得到答案.【詳解】若,且,則時等號成立.故答案為【點睛】本題考查了均值不等式,“1”的代換是解題的關(guān)鍵.14、【解析】

本題首先可以根據(jù)向量的運算得出,然后等式兩邊同時平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設(shè)向量與向量的夾角為,因為,所以,即,因為,所以,即,所以的取值范圍是.【點睛】本題考查向量的運算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計算能力,是簡單題.15、1835028【解析】

分別分析中二元子集中較大元素分別為、、、時,對應(yīng)的二元子集中較小的元素,再利用題中的定義結(jié)合數(shù)列求和思想求出結(jié)果.【詳解】當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、、、.由題意可得,令,得,上式下式得,化簡得,因此,,故答案為:.【點睛】本題考查新定義,同時也考查了數(shù)列求和,解題的關(guān)鍵就是找出相應(yīng)的規(guī)律,列出代數(shù)式進行計算,考查運算求解能力,屬于難題.16、【解析】

利用誘導(dǎo)公式以及正弦差角公式化簡式子,之后利用特殊角的三角函數(shù)值直接計算即可.【詳解】.故答案為【點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有誘導(dǎo)公式,差角正弦公式,特殊角的三角函數(shù)值,屬于簡單題目.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由遞推公式,再遞推一步,得,兩式相減化簡得,可以判斷數(shù)列是等差數(shù)列,進而可以求出等差數(shù)列的通項公式;(2)根據(jù)(1)和對數(shù)的運算性質(zhì),用裂項相消法可以求出數(shù)列的前項和.【詳解】解:(1)由知所以,即,從而所以,數(shù)列是以2為公比的等比數(shù)列又可得,綜上所述,故.(2)由(1)可知,故,綜上所述,所以,故而所以.【點睛】本題考查了已知遞推公式求數(shù)列通項公式問題,考查了等差數(shù)列的判斷以及等差數(shù)列的通項公式,考查了用裂項相消法求數(shù)列前項和問題,考查了數(shù)學(xué)運算能力.18、(1)(2)答案不唯一,具體見解析(3)【解析】

(1)根據(jù)圖像先確定A,再確定,代入一個特殊點再確定.(2)根據(jù)(1)的結(jié)果結(jié)合圖像即可解決.(3)根據(jù)(1)的結(jié)果以及三角函數(shù)的變換求出即可解決.【詳解】解:(Ⅰ)由圖可知:,即,又由圖可知:是五點作圖法中的第三點,,即.(Ⅱ)因為的周期為,在內(nèi)恰有個周期.⑴當(dāng)時,方程在內(nèi)有個實根,設(shè)為,結(jié)合圖像知,故所有實數(shù)根之和為;⑵當(dāng)時,方程在內(nèi)有個實根為,故所有實數(shù)根之和為;⑶當(dāng)時,方程在內(nèi)有個實根,設(shè)為,結(jié)合圖像知,故所有實數(shù)根之和為;綜上:當(dāng)時,方程所有實數(shù)根之和為;當(dāng)時,方程所有實數(shù)根之和為;(Ⅲ),函數(shù)的圖象如圖所示:則當(dāng)圖象伸長為原來的倍以上時符合題意,所以.【點睛】本題主要考查了正弦函數(shù)的變換,根據(jù)圖像確定函數(shù),方程與函數(shù).在解決方程問題時往往轉(zhuǎn)化成兩個函數(shù)圖像交點的問題解決.本題屬于中等題.19、(1);(2),,,;(3)【解析】

(1)根據(jù)題意,化簡得,運用已知求公式,即可求解通項公式;(2)根據(jù)題意,寫出通項,根據(jù)定義,令,可求解,,的值,再判斷單調(diào)遞減,可求數(shù)列的通項公式;(3)由(1)(2)的數(shù)列、的通項公式,代入數(shù)列中,運用錯位相減法求和.【詳解】(1)∵,∴,當(dāng)時,,化簡得,∴,當(dāng)時,,,∵,∴,∴是首項為1,公差為2的等差數(shù)列,∴.(2),,,當(dāng)時,,∴單調(diào)遞減,所以.(3)作差,得【點睛】本題考查(1)已知求公式;(2)數(shù)列的單調(diào)性;(3)錯位相減法求和;考查計算能力,考查分析問題解決問題的能力,綜合性較強,有一定難度.20、(1)見解析(2)見解析(3)【解析】

(1)由中位線定理可得,,再根據(jù)平行公理可得,,即可根據(jù)線面平行的判定定理證出;(2)根據(jù)題意可計算出,而是的中點,可得,又,即可根據(jù)線面垂直的判定定理證出;(3)根據(jù)等積法,即可求出.【詳解】(1)證明:連接,,,、是、中點,,從而.又平面,平面,直線平面;(2)證明:,,.底面,直線與底面成角,..是的中點,.,.面,面,直線平面;(3)由題可知,,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理的應(yīng)用,以及利用等積法求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論