版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省永州市祁陽縣第一中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若雙曲線的中心為原點(diǎn),是雙曲線的焦點(diǎn),過的直線與雙曲線相交于,兩點(diǎn),且的中點(diǎn)為,則雙曲線的方程為()A. B. C. D.2.若實(shí)數(shù)滿足約束條件,則的最大值是()A. B.0 C.1 D.23.已知,,,則的取值范圍是()A. B. C. D.4.函數(shù)的零點(diǎn)所在的一個區(qū)間是().A. B. C. D.5.如果a<b<0,那么下列不等式成立的是()A. B. C. D.6.函數(shù)的部分圖像如圖所示,則當(dāng)時,的值域是()A. B.C. D.7.閱讀如圖的程序框圖,運(yùn)行該程序,則輸出的值為()A.3 B.1C.-1 D.08.在中,角A,B,C所對的邊分別為a,b,c,若,則()A. B. C. D.9.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}則A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)10.在中,若°,°,.則=A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域________.12.方程的解=__________.13.設(shè)數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項的和________14.若、為單位向量,且,則向量、的夾角為_______.(用反三角函數(shù)值表示)15.已知三棱錐的底面是腰長為2的等腰直角三角形,側(cè)棱長都等于,則其外接球的體積為______.16.的內(nèi)角的對邊分別為.若,則的面積為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某快遞小哥從地出發(fā),沿小路以平均速度為20公里小時送快件到處,已知公里,,是等腰三角形,.(1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車的平均速度為60公里小時,問,汽車能否先到達(dá)處?18.設(shè)函數(shù).(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求實(shí)數(shù)的取值范圍.19.求函數(shù)的單調(diào)遞增區(qū)間.20.已知,.(1)求及的值;(2)求的值.21.若關(guān)于的不等式對一切實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題可知,直線:,設(shè),,得,又,解得,所以雙曲線方程為,故選B。2、C【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)即可得解.【詳解】作出可行域如圖,設(shè),聯(lián)立,則,,當(dāng)直線經(jīng)過點(diǎn)時,截距取得最小值,取得最大值.故選:C【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.3、D【解析】
根據(jù)所給等式,用表示出,代入中化簡,令并構(gòu)造函數(shù),結(jié)合函數(shù)的圖像與性質(zhì)即可求得的取值范圍.【詳解】因為,所以,由解得,因為,所以,則由可得,令,.所以畫出,的圖像如下圖所示:由圖像可知,函數(shù)在內(nèi)的值域為,即的取值范圍為,故選:D.【點(diǎn)睛】本題考查了由等式求整式的取值范圍問題,打勾函數(shù)的圖像與性質(zhì)應(yīng)用,注意若使用基本不等式,注意等號成立條件及自變量取值范圍影響,屬于中檔題.4、B【解析】
判斷函數(shù)的單調(diào)性,利用f(﹣1)與f(1)函數(shù)值的大小,通過零點(diǎn)存在性定理判斷即可【詳解】函數(shù)f(x)=2x+3x是增函數(shù),f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零點(diǎn)存在性定理可知:函數(shù)f(x)=2x+3x的零點(diǎn)所在的一個區(qū)間(﹣1,1).故選:B.【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,考查計算能力,注意函數(shù)的單調(diào)性的判斷.5、D【解析】對于選項A,因為,所以,所以即,所以選項A錯誤;對于選項B,,所以,選項B錯誤;對于選項C,,當(dāng)時,,當(dāng),,故選項C錯誤;對于選項D,,所以,又,所以,所以,選D.6、D【解析】如圖,,得,則,又當(dāng)時,,得,又,得,所以,當(dāng)時,,所以值域為,故選D.點(diǎn)睛:本題考查由三角函數(shù)的圖象求解析式.本題中,先利用周期求的值,然后利用特殊點(diǎn)(一般從五點(diǎn)內(nèi)?。┣蟮闹担詈蟾鶕?jù)題中的特殊點(diǎn)求的值.值域的求解利用整體思想.7、D【解析】
從起始條件、開始執(zhí)行程序框圖,直到終止循環(huán).【詳解】,,,,,輸出.【點(diǎn)睛】本題是直到型循環(huán),只要滿足判斷框中的條件,就終止循環(huán),考查讀懂簡單的程序框圖.8、B【解析】
由題意和余弦定理可得,再由余弦定理可得,可得角的值.【詳解】在中,,由余弦定理可得,,,又,.故選:.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查了轉(zhuǎn)化思想,屬基礎(chǔ)題.9、A【解析】
可解出集合A,然后進(jìn)行交集的運(yùn)算即可.【詳解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故選:A.【點(diǎn)睛】本題考查交集的運(yùn)算,是基礎(chǔ)題,注意A中x∈N10、A【解析】∵在△ABC中,A=45°,B=60°,a=2,∴由正弦定理得:.本題選擇A選項.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
根據(jù)反正弦函數(shù)的定義得出,解出可得出所求函數(shù)的定義域.【詳解】由反正弦的定義可得,解得,因此,函數(shù)的定義域為,故答案為:.【點(diǎn)睛】本題考查反正弦函數(shù)的定義域,解題的關(guān)鍵就是正弦值域的應(yīng)用,考查運(yùn)算求解能力,屬于基礎(chǔ)題.12、-1【解析】分析:由對數(shù)方程,轉(zhuǎn)化為指數(shù)方程,解方程即可.詳解:由log2(1﹣2x)=﹣1可得(1﹣2x)=,解方程可求可得,x=﹣1故答案為:﹣1點(diǎn)睛:本題主要考查了對數(shù)方程的求解,解題中要善于利用對數(shù)與指數(shù)的轉(zhuǎn)化,屬于基礎(chǔ)題.13、2019【解析】
根據(jù)二次方程根與系數(shù)的關(guān)系得出,再利用等差數(shù)列下標(biāo)和的性質(zhì)得到,然后利用等差數(shù)列求和公式可得出答案.【詳解】由二次方程根與系數(shù)的關(guān)系可得,由等差數(shù)列的性質(zhì)得出,因此,等差數(shù)列的前項的和為,故答案為.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)與等差數(shù)列求和公式的應(yīng)用,涉及二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵在于等差數(shù)列性質(zhì)的應(yīng)用,屬于中等題.14、.【解析】
設(shè)向量、的夾角為,利用平面向量數(shù)量積的運(yùn)算律與定義計算出的值,利用反三角函數(shù)可求出的值.【詳解】設(shè)向量、的夾角為,由平面向量數(shù)量積的運(yùn)算律與定義得,,,因此,向量、的夾角為,故答案為.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積計算平面向量所成的夾角,解題的關(guān)鍵就是利用平面向量數(shù)量積的定義和運(yùn)算律,考查運(yùn)算求解能力,屬于中等題.15、【解析】
先判斷球心在上,再利用勾股定理得到半徑,最后計算體積.【詳解】三棱錐的底面是腰長為2的等腰直角三角形,側(cè)棱長都等于為中點(diǎn),為外心,連接,平面球心在上設(shè)半徑為故答案為【點(diǎn)睛】本題考查了三棱錐外接球的體積,意在考查學(xué)生的空間想象能力和計算能力.16、【解析】
本題首先應(yīng)用余弦定理,建立關(guān)于的方程,應(yīng)用的關(guān)系、三角形面積公式計算求解,本題屬于常見題目,難度不大,注重了基礎(chǔ)知識、基本方法、數(shù)學(xué)式子的變形及運(yùn)算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點(diǎn)睛】本題涉及正數(shù)開平方運(yùn)算,易錯點(diǎn)往往是余弦定理應(yīng)用有誤或是開方導(dǎo)致錯誤.解答此類問題,關(guān)鍵是在明確方法的基礎(chǔ)上,準(zhǔn)確記憶公式,細(xì)心計算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)汽車能先到達(dá)處.【解析】試題分析:(1)由題意結(jié)合圖形,根據(jù)正弦定理可得,,求得的長,又,可求出快遞小哥從地到地的路程,再計算小哥到達(dá)地的時間,從而問題可得解;(2)由題意,可根據(jù)余弦定理分別算出與的長,計算汽車行馳的路程,從而求出汽車到達(dá)地所用的時間,計算其與步小哥所用時間相差是否有15分鐘,從而問題可得解.試題解析:(1)(公里),中,由,得(公里)于是,由知,快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)在中,由,得(公里),在中,,由,得(公里),-由(分鐘)知,汽車能先到達(dá)處.點(diǎn)睛:此題主要考查了解三角形中正弦定理、余弦定理在實(shí)際生活中的應(yīng)用,以及關(guān)于路程問題的求解運(yùn)算等方面的知識與技能,屬于中低檔題型,也是??碱}型.在此類問題中,總是正弦定理、余弦定理,以及相關(guān)聯(lián)的三角函數(shù)的知識,所以根據(jù)題目條件、圖形進(jìn)行挖掘,找到與問題銜接處,從而尋找到問題的解決方案.18、(1)(2)①9,②【解析】
(1)根據(jù)不等式的端點(diǎn)值是對應(yīng)方程的實(shí)數(shù)根,利用根與系數(shù)的關(guān)系,得到的值;(2)①根據(jù)求的最值,可利用求最值;②利用二次函數(shù)恒成立問題求解.【詳解】由已知可知,的兩根是所以,解得.(2)①,當(dāng)時等號成立,因為,解得時等號成立,此時的最小值是9.②在上恒成立,,又因為代入上式可得解得:.【點(diǎn)睛】本題考查了二次函數(shù)與一元二次方程和一元二次不等式的問題,和基本不等式求最值,屬于基礎(chǔ)題型.19、()【解析】
先化簡函數(shù)得到,再利用復(fù)合函數(shù)單調(diào)性原則結(jié)合整體法求單調(diào)區(qū)間即可.【詳解】,令,則,因為是的一次函數(shù),且在定義域上單調(diào)遞增,所以要求的單調(diào)遞增區(qū)間,即求的單調(diào)遞減區(qū)間,即(),∴(),即(),∴函數(shù)的單調(diào)遞增區(qū)間為().【點(diǎn)睛】本題考查求復(fù)合型三角函數(shù)的單調(diào)區(qū)間,答題時注意,復(fù)合函數(shù)的單調(diào)性遵循“同增異減”法則.20、(1),;(2).【解析】
(1)由已知,,利用,可得的值,再利用及二倍角公式,分別求得及的值;(2)利用倍角公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度能源設(shè)備抵押權(quán)人環(huán)保責(zé)任合同3篇
- ci語言課程設(shè)計
- 無奮斗不青春演講稿范文(5篇)
- 高考作文名師點(diǎn)評全國Ⅱ卷
- 春節(jié)日記合集九篇
- 甲苯管殼換熱器課程設(shè)計
- 教育培訓(xùn)電視廣告語大全
- 搞笑主持詞開場白范文
- 2024年度新能源項目碳排放權(quán)轉(zhuǎn)讓協(xié)議范本3篇
- 教研組微能力點(diǎn)研修計劃范文(14篇)
- 【9歷期末】安徽省淮北市2023-2024學(xué)年九年級上學(xué)期期末歷史試題
- 2024年度物流園區(qū)運(yùn)營承包合同范本3篇
- 期末綜合試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級上冊(含答案)
- 投資控股合同
- 2024-2025學(xué)年上學(xué)期武漢小學(xué)語文六年級期末模擬試卷
- MOOC 計量經(jīng)濟(jì)學(xué)-西南財經(jīng)大學(xué) 中國大學(xué)慕課答案
- 公路PPP項目運(yùn)營與維護(hù)具體方案
- 踝關(guān)節(jié)扭傷.ppt
- 《合作意向確認(rèn)函》范本
- 三年級數(shù)學(xué)上冊全冊練習(xí)題
- 六年級上冊數(shù)學(xué)試題-天津河西區(qū)2018-2019學(xué)年度期末考試人教新課標(biāo)含答案
評論
0/150
提交評論