版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省溫州市蒼南縣樹人中學2025屆高一下數(shù)學期末學業(yè)質量監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調遞減的函數(shù)是()A. B. C. D.2.有一個容量為200的樣本,樣本數(shù)據(jù)分組為,,,,,其頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計樣本數(shù)據(jù)落在區(qū)間內的頻數(shù)為()A.48 B.60 C.64 D.723.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C4.正方體中,異面直線與BC所成角的大小為()A. B. C. D.5.角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.計算的值為().A. B. C. D.7.已知函數(shù)的圖像如圖所示,則和分別是()A. B. C. D.8.已知是平面內兩個互相垂直的向量,且,若向量滿足,則的最大值是()A.1 B. C.3 D.9.一個人連續(xù)射擊三次,則事件“至少擊中兩次”的對立事件是()A.恰有一次擊中 B.三次都沒擊中C.三次都擊中 D.至多擊中一次10.將函數(shù)的圖像向右平衡個單位長度,再把圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)的最大值為 B.函數(shù)的最小正周期為C.函數(shù)的圖象關于直線對稱 D.函數(shù)在區(qū)間上單調遞增二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)那么的值為.12.將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則__________.13.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則直線不經過第一象限的概率為__________.14.我國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一段記載:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關.”其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天才到達目的地.”則該人第一天走的路程為__________里.15.設不等式組所表示的平面區(qū)域為D.若直線與D有公共點,則實數(shù)a的取值范圍是_____________.16.若,且,則的最小值是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.關于的不等式的解集為.(1)求實數(shù)的值;(2)若,求的值.18.已知函數(shù)的圖象如圖所示.(1)求這個函數(shù)的解析式,并指出它的振幅和初相;(2)求函數(shù)在區(qū)間上的最大值和最小值,并指出取得最值時的的值.19.已知數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)已知,記(且),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請說明理由;(3)若數(shù)列,對于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列.20.如圖,已知平面平行于三棱錐的底面,等邊所在的平面與底面垂直,且,設(1)求證:且;(2)求二面角的余弦值.21.在直角坐標系中,,,點在直線上.(1)若三點共線,求點的坐標;(2)若,求點的坐標.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
依次分析選項的奇偶性和在區(qū)間上的單調性即可得到答案.【詳解】因為是奇函數(shù),故A選項錯誤,因為是非奇非偶函數(shù),故D選項錯誤,因為是偶函數(shù),由函數(shù)圖像知,在區(qū)間上單調遞增,故B選項錯誤,因為是偶函數(shù),由函數(shù)圖像知,在區(qū)間上單調遞減,故C選項正確.故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判斷,二次函數(shù)單調性的判斷,屬于基礎題.2、B【解析】
由,求出,計算出數(shù)據(jù)落在區(qū)間內的頻率,即可求解.【詳解】由,解得,所以數(shù)據(jù)落在區(qū)間內的頻率為,所以數(shù)據(jù)落在區(qū)間內的頻數(shù),故選B.【點睛】本題主要考查了頻率分布直方圖,頻率、頻數(shù),屬于中檔題.3、B【解析】
由集合A,B,C,求出B與C的并集,判斷A與C的包含關系,以及A,B,C三者之間的關系即可.【詳解】由題BA,∵A={第一象限角},B={銳角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,則B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故選:B.【點睛】此題考查了集合間的基本關系及運算,熟練掌握象限角,銳角,以及小于90°的角表示的意義是解本題的關鍵,是易錯題4、D【解析】
利用異面直線與BC所成角的的定義,平移直線,即可得答案.【詳解】在正方體中,易得.異面直線與垂直,即所成的角為.故選:D.【點睛】本題考查異面直線所成角的定義,考查對基本概念的理解,屬于基礎題.5、C【解析】
由,即可判斷.【詳解】,則與的終邊相同,則角的終邊落在第三象限故選:C【點睛】本題主要考查了判斷角的終邊所在象限,屬于基礎題.6、D【解析】
利用誘導公式以及特殊角的三角函數(shù)值可求出結果.【詳解】由誘導公式可得,故選D.【點睛】本題考查誘導公式求值,解題時要熟練利用“奇變偶不變,符號看象限”基本原則加以理解,考查計算能力,屬于基礎題.7、C【解析】
通過識別圖像,先求,再求周期,將代入求即可【詳解】由圖可知:,,將代入得,又,,故故選C【點睛】本題考查通過三角函數(shù)識圖求解解析式,屬于基礎題8、D【解析】
設出平面向量的夾角,求出的夾角,最后利用平面向量數(shù)量積的運算公式進行化簡等式,最后利用輔助角公式求出的最大值.【詳解】設平面向量的夾角為,因為是平面內兩個互相垂直的向量,所以平面向量的夾角為,因為是平面內兩個互相垂直的向量,所以.,,,其中,顯然當時,有最大值,即.故選:D【點睛】本題考查平面向量數(shù)量積的性質及運算,屬于中檔題.9、D【解析】
根據(jù)判斷的原則:“至少有個”的對立是“至多有個”.【詳解】根據(jù)判斷的原則:“至少擊中兩次”的對立事件是“至多擊中一次”,故選D.【點睛】至多至少的對立事件問題,可以采用集合的補集思想進行轉化.如“至少有個”則對應“”,其補集應為“”.10、C【解析】
根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得到g(x)的解析式,再利用正弦函數(shù)的圖象性質,得出結論.【詳解】將函數(shù)的圖象向右平移個單位長度,可得y=2sin(2x)的圖象,再把圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)g(x)=2sin(x)的圖象,故g(x)的最大值為2,故A錯誤;顯然,g(x)的最小正周期為2π,故B錯誤;當時,g(x)=,是最小值,故函數(shù)g(x)的圖象關于直線對稱,故C正確;在區(qū)間上,x∈[,],函數(shù)g(x)=2sin(x)單調遞減,故D錯誤,故選:C.【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象性質應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:因為函數(shù)所以==.考點:本題主要考查分段函數(shù)的概念,計算三角函數(shù)值.點評:基礎題,理解分段函數(shù)的概念,代入計算.12、【解析】
先利用輔助角公式將函數(shù)的解析式化簡,根據(jù)三角函數(shù)的變化規(guī)律求出函數(shù)的解析式,即可計算出的值.【詳解】,由題意可得,因此,,故答案為.【點睛】本題考查輔助角公式化簡、三角函數(shù)圖象變換,在三角圖象相位變換的問題中,首先應該將三角函數(shù)的解析式化為(或)的形式,其次要注意左加右減指的是在自變量上進行加減,考查計算能力,屬于中等題.13、【解析】
首先求出試驗發(fā)生包含的事件的取值所有可能的結果,滿足條件事件直線不經過第一象限,符合條件的有種結果,根據(jù)古典概型概率公式得到結果.【詳解】試驗發(fā)生包含的事件,,得到的取值所有可能的結果有:共種結果,由得,當時,直線不經過第一象限,符合條件的有種結果,所以直線不經過第一象限的概率.故答案為:【點睛】本題是一道古典概型題目,考查了古典概型概率公式,解題的關鍵是求出列舉基本事件,屬于基礎題.14、192【解析】設每天走的路程里數(shù)為由題意知是公比為的等比數(shù)列∵∴∴故答案為15、【解析】
畫出不等式組所表示的平面區(qū)域,直線過定點,根據(jù)圖像確定直線斜率的取值范圍.【詳解】畫出不等式組所表示的平面區(qū)域如下圖所示,直線過定點,由圖可知,而,所以.故填:.【點睛】本小題主要考查不等式表示區(qū)域的畫法,考查直線過定點問題,考查直線斜率的取值范圍的求法,屬于基礎題.16、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由行列式的運算法則,得原不等式即,而不等式的解集為,采用比較系數(shù)法,即可得到實數(shù)的值;(2)把代入,求得,進一步得到,再由兩角差的正切公式即可求解.【詳解】(1)原不等式等價于,由題意得不等式的解集為,故是方程的兩個根,代入解得,所以實數(shù)的值為.(2)由,得,即.,【點睛】本題考查了行列式的運算法則、由一元二次不等式的解集求參數(shù)值、二倍角的正切公式以及兩角差的正切公式,需熟記公式,屬于基礎題.18、(1)函數(shù)的解析式為,其振幅是2,初相是(2)時,函數(shù)取得最大值0;時,函數(shù)取得最小值勤-2【解析】
(1)根據(jù)圖像寫出,由周期求出,再由點確定的值.(2)根據(jù)的取值范圍確定的取值范圍,再由的單調求出最值【詳解】(1)由圖象知,函數(shù)的最大值為2,最小值為-2,∴,又∵,∴,,∴.∴函數(shù)的解析式為.∵函數(shù)的圖象經過點,∴,∴,又∵,∴.故函數(shù)的解析式為,其振幅是2,初相是.(2)∵,∴.于是,當,即時,函數(shù)取得最大值0;當,即時,函數(shù)取得最小值為-2.【點睛】本題考查由圖像確定三角函數(shù)、給定區(qū)間求三角函數(shù)的最值,屬于基礎題.19、(1)(2)(3)見解析【解析】
(1)根據(jù)和項與通項關系得,再根據(jù)等比數(shù)列定義與通項公式求解(2)先化簡,再根據(jù)恒成立思想求的值(3)根據(jù)和項得,再作差得,最后根據(jù)等差數(shù)列定義證明.【詳解】(1),所以,由得時,,兩式相減得,,,數(shù)列是以2為首項,公比為的等比數(shù)列,所以.(2)若數(shù)列是常數(shù)列,為常數(shù).只有,解得,此時.(3)①,,其中,所以,當時,②②式兩邊同時乘以得,③①式減去③得,,所以,因為,所以數(shù)列是以為首項,公差為的等差數(shù)列.【點睛】本題考查利用和項求通項、等差數(shù)列定義以及利用恒成立思想求參數(shù),考查基本分析論證與求解能力,屬中檔題20、(1)證明見解析;(1)【解析】
(1)由平面∥平面,根據(jù)面面平行的性質定理,可得,,再由,得到.由平面平面,根據(jù)面面垂直的性質定理可得平面,從而有.(2)過作于,根據(jù)題意有平面,過D作于H,連結AH,由三垂線定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【詳解】(1)證明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)過作于,∵為正三角形,∴D為中點,∵平面∴又∵,∴平面.在等邊三角形中,,過D作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶市2025屆高三高三第一次聯(lián)合診斷檢測生物試卷(含答案)
- 內蒙古呼和浩特市2024-2025學年高一上學期期末學業(yè)質量監(jiān)測考試歷史試卷(含答案)
- 湖北省黃石市大冶市2024-2025學年九年級上學期期末考試歷史試卷(含答案)
- 2025年度室內設計施工后期維護保養(yǎng)合同3篇
- 福建省南平市嵐谷中學2020-2021學年高二語文月考試題含解析
- 福建省南平市井后中學2021-2022學年高三地理月考試卷含解析
- 2025年度二零二五年度竹林生態(tài)保護與承包開發(fā)合同3篇
- 2025年度出租車客運服務與安全管理合同范本3篇
- 2024起訴離婚后財產分割與子女撫養(yǎng)糾紛仲裁協(xié)議書3篇
- 2024香菇種植基地農業(yè)保險合作協(xié)議3篇
- 意識障礙的判斷及護理
- (高清版)JTGT 3650-01-2022 公路橋梁施工監(jiān)控技術規(guī)程
- 數(shù)據(jù)資產入表理論與實踐
- 2023年供應商質量年終總結報告
- 2024家庭戶用光伏發(fā)電系統(tǒng)運行和維護規(guī)范
- 醫(yī)療機構強制報告制度
- 江蘇省鎮(zhèn)江市2023-2024學年高一上學期期末考試化學試題(解析版)
- 現(xiàn)場材料員述職報告
- 特種設備檢驗人員考核培訓課件-安全意識培養(yǎng)與心理健康
- 00和值到27和值的算法書
- 總務工作總結和計劃
評論
0/150
提交評論