2024屆浙江省金華市高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第1頁
2024屆浙江省金華市高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第2頁
2024屆浙江省金華市高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第3頁
2024屆浙江省金華市高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第4頁
2024屆浙江省金華市高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆浙江省金華市高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知隨機變量服從正態(tài)分布,且,,則()A.0.2 B.0.3 C.0.7 D.0.82.等差數(shù)列{an}的前n項和為Sn,若S9=S4,則S13=()A.13 B.7 C.0 D.13.已知的三個內(nèi)角所對的邊為,面積為,且,則等于()A. B. C. D.4.已知向量,與的夾角為,則()A.3 B.2 C. D.15.在中,若,則()A. B. C. D.6.函數(shù)圖象向右平移個單位長度,所得圖象關(guān)于原點對稱,則在上的單調(diào)遞增區(qū)間為()A. B. C. D.7.若,,則方程有實數(shù)根的概率為()A. B. C. D.8.與直線垂直于點的直線的一般方程是()A. B. C. D.9.在平面坐標系中,是圓上的四段?。ㄈ鐖D),點P在其中一段上,角以O(shè)x為始邊,OP為終邊,若,則P所在的圓弧最有可能的是()A. B. C. D.10.若兩個球的半徑之比為,則這兩球的體積之比為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________12.已知數(shù)列中,,,設(shè),若對任意的正整數(shù),當時,不等式恒成立,則實數(shù)的取值范圍是______.13.已知點是所在平面內(nèi)的一點,若,則__________.14.函數(shù)的值域是______.15.已知,向量的夾角為,則的最大值為_____.16.已知圓錐的頂點為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.(1)估計這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;(3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:方案①:所有芒果以9元/千克收購;方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.通過計算確定種植園選擇哪種方案獲利更多.參考數(shù)據(jù):.18.已知數(shù)列的前項和,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.19.已知數(shù)列滿足:.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的前項和.20.若x,y為正實數(shù),求證:,并說明等號成立的條件.21.在中,已知角的對邊分別為,且.(1)求角的大??;(2)若,,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】隨機變量服從正態(tài)分布,所以曲線關(guān)于對稱,且,由,可知,所以,故選B.2、C【解析】

由題意,利用等差數(shù)列前n項和公式求出a1=﹣6d,由此能求出S13的值.【詳解】∵等差數(shù)列{an}的前n項和為Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故選:C.【點睛】本題考查等差數(shù)列的前n項和公式的應(yīng)用,考查運算求解能力,是基礎(chǔ)題.3、C【解析】

利用三角形面積公式可得,結(jié)合正弦定理及三角恒等變換知識可得,從而得到角A.【詳解】∵∴即∴∴∴,∴(舍)∴故選C【點睛】此題考查了正弦定理、三角形面積公式,以及三角恒等變換,熟練掌握邊角的轉(zhuǎn)化是解本題的關(guān)鍵.4、C【解析】

由向量的模公式以及數(shù)量積公式,即可得到本題答案.【詳解】因為向量,與的夾角為,所以.故選:C【點睛】本題主要考查平面向量的模的公式以及數(shù)量積公式.5、A【解析】

由已知利用余弦定理即可解得的值.【詳解】解:,,,由余弦定理可得:,解得:,故選:A.【點睛】本題主要考查余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】

根據(jù)三角函數(shù)的圖象平移關(guān)系結(jié)合函數(shù)關(guān)于原點對稱的性質(zhì)求出的值,結(jié)合函數(shù)的單調(diào)性進行求解即可.【詳解】函數(shù)圖象向右平移個單位長度,得到,所得圖象關(guān)于原點對稱,則,得,,∵,∴當時,,則,由,,得,,即函數(shù)的單調(diào)遞增區(qū)間為,,∵,∴當時,,即,即在上的單調(diào)遞增區(qū)間為,故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),求出函數(shù)的解析式結(jié)合三角函數(shù)的單調(diào)性是解決本題的關(guān)鍵.7、B【解析】方程有實數(shù)根,則:,即:,則:,如圖所示,由幾何概型計算公式可得,滿足題意的概率值為:.本題選擇B選項.8、A【解析】由已知可得這就是所求直線方程,故選A.9、A【解析】

根據(jù)三角函數(shù)線的定義,分別進行判斷排除即可得答案.【詳解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,則cosα<sinα<tanα;若P在EF段,正切,余弦為負值,正弦為正,tanα<cosα<sinα;若P在GH段,正切為正值,正弦和余弦為負值,cosα<sinα<tanα.∴P所在的圓弧最有可能的是.故選:A.【點睛】本題任意角的三角函數(shù)的應(yīng)用,根據(jù)角的大小判斷角的正弦、余弦、正切值的正負及大小,為基礎(chǔ)題.10、C【解析】

根據(jù)球的體積公式可知兩球體積比為,進而得到結(jié)果.【詳解】由球的體積公式知:兩球的體積之比故選:【點睛】本題考查球的體積公式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【點睛】本題主要考查圓錐體積與球體積的相關(guān)計算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計算能力和分析能力.12、【解析】∵,(,),當時,,,…,,并項相加,得:,

∴,又∵當時,也滿足上式,

∴數(shù)列的通項公式為,∴

,令(),則,∵當時,恒成立,∴在上是增函數(shù),

故當時,,即當時,,對任意的正整數(shù),當時,不等式恒成立,則須使,即對恒成立,即的最小值,可得,∴實數(shù)的取值范圍為,故答案為.點睛:本題考查數(shù)列的通項及前項和,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運算求解能力,注意解題方法的積累,屬于難題通過并項相加可知當時,進而可得數(shù)列的通項公式,裂項、并項相加可知,通過求導(dǎo)可知是增函數(shù),進而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.13、【解析】

設(shè)為的中點,為的中點,為的中點,由得到,再進一步分析即得解.【詳解】如圖,設(shè)為的中點,為的中點,為的中點,因為,所以可得,整理得.又,所以,所以,又,所以.故答案為【點睛】本題主要考查向量的運算法則和共線向量,意在考查學(xué)生對這些知識的理解掌握水平,解答本題的關(guān)鍵是作輔助線,屬于中檔題.14、【解析】

先求得函數(shù)的定義域,根據(jù)函數(shù)在定義域內(nèi)的單調(diào)性,求得函數(shù)的值域.【詳解】依題意可知,函數(shù)的定義域為,且函數(shù)在區(qū)間上為單調(diào)遞增函數(shù),故當時,函數(shù)有最小值為,當時,函數(shù)有最大值為.所以函數(shù)函數(shù)的值域是.故答案為:.【點睛】本小題主要考查反正弦函數(shù)的定義域和單調(diào)性,考查正弦函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性求函數(shù)的值域,屬于基礎(chǔ)題.15、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.16、8π【解析】分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長,代入公式計算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點睛:此題為填空題的壓軸題,實際上并不難,關(guān)鍵在于根據(jù)題意作出相應(yīng)圖形,利用平面幾何知識求解相應(yīng)線段長,代入圓錐體積公式即可.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)255;(2);(3)選擇方案②獲利多【解析】

1)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù).(2)利用分層抽樣從這兩個范圍內(nèi)抽取5個芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個,記為a1,a2,質(zhì)量在[250,300)內(nèi)的芒果有3個,記為b1,b2,b3,從抽取的5個芒果中抽取2個,利用列舉法能求出這2個芒果都來自同一個質(zhì)量區(qū)間的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入為8400元,不低于250克的芒果的收入為17400元,由此能求出選擇方案②獲利多.【詳解】(1)由頻率分布直方圖知,各區(qū)間頻率為0.07,0.15,0.20,0.30,0.25,0.03這組數(shù)據(jù)的平均數(shù).(2)利用分層抽樣從這兩個范圍內(nèi)抽取5個芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個,記為,,質(zhì)量在[250,300)內(nèi)的芒果有3個,記為,,;從抽取的5個芒果中抽取2個共有10種不同情況:,,,,,,,,,.記事件為“這2個芒果都來自同一個質(zhì)量區(qū)間”,則有4種不同組合:,,,從而,故這2個芒果都來自同一個質(zhì)量區(qū)間的概率為.(3)方案①收入:(元);方案②:低于250克的芒果收入為(元);不低于250克的芒果收入為(元);故方案②的收入為(元).由于,所以選擇方案②獲利多.【點睛】本題考查平均數(shù)、概率的求法,考查頻率分布直方圖、古典概型等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題.18、(Ⅰ);(Ⅱ).【解析】

(1)本題可令求出的值,然后令求出,即可求出數(shù)列的通項公式;(2)首先可令,然后根據(jù)錯位相減法即可求出數(shù)列的前項和?!驹斀狻?1)當,,得.當時,,,兩式相減,得,化簡得,所以數(shù)列是首項為、公比為的等比數(shù)列,所以。(2)由(1)可知,令,則①,兩邊同乘以公比,得到②,由①②得:所以?!军c睛】本題主要考查了數(shù)列通項的求法以及數(shù)列前項和的方法,求數(shù)列通項常用的方法有:累加法、累乘法、定義法、配湊法等;求數(shù)列前項和常用的方法有:錯位相減法、裂項相消法、公式法、分組求和法等,屬于中等題。19、(1)見證明;(2)【解析】

(1)由變形得,即,從而可證得結(jié)論成立,進而可求出通項公式;(2)由(1)及條件可求出,然后根據(jù)分組求和法可得.【詳解】(1)證明:因為,所以.因為所以所以.又,所以是首項為,公比為2的等比數(shù)列,所以.(2)解:由(1)可得,所以.【點睛】證明數(shù)列為等比數(shù)列時,在得到后,不要忘了說明數(shù)列中沒有零項這一步驟.另外,對于數(shù)列的求和問題,解題時要根據(jù)通項公式的特點選擇合適的方法進行求解,屬于基礎(chǔ)題.20、當且僅當時取等號,證明見解析【解析】

由題意,.【詳解】由題意,可得:,當且僅當時取等號,又,當且僅當時取等號,聯(lián)立解得,故,當且僅當時取等號.【點睛】本題考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論