廣西壯族自治區(qū)欽州市2024屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
廣西壯族自治區(qū)欽州市2024屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
廣西壯族自治區(qū)欽州市2024屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
廣西壯族自治區(qū)欽州市2024屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
廣西壯族自治區(qū)欽州市2024屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西壯族自治區(qū)欽州市2024屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖為某班35名學(xué)生的投籃成績(每人投一次)的條形統(tǒng)計圖,其中上面部分數(shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績的中位數(shù)是5,則根據(jù)統(tǒng)計圖,則下列說法錯誤的是()A.3球以下(含3球)的人數(shù)為10B.4球以下(含4球)的人數(shù)為17C.5球以下(含5球)的人數(shù)無法確定D.5球的人數(shù)和6球的人數(shù)一樣多2.小金同學(xué)在學(xué)校中貫徹著“邊玩邊學(xué)”的學(xué)風(fēng),他在“漢諾塔”的游戲中發(fā)現(xiàn)了數(shù)列遞推的奧妙:有、、三個木樁,木樁上套有編號分別為、、、、、、的七個圓環(huán),規(guī)定每次只能將一個圓環(huán)從一個木樁移動到另一個木樁,且任意一個木樁上不能出現(xiàn)“編號較大的圓環(huán)在編號較小的圓環(huán)之上”的情況,現(xiàn)要將這七個圓環(huán)全部套到木樁上,則所需的最少次數(shù)為()A. B. C. D.3.已知滿足條件,則目標函數(shù)的最小值為A.0 B.1 C. D.4.若將函數(shù)的圖象向右平移個單位,所得圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.5.已知三棱柱的底面為直角三角形,側(cè)棱長為2,體積為1,若此三棱柱的頂點均在同一球面上,則該球半徑的最小值為()A.1 B.2 C. D.6.球是棱長為的正方體的內(nèi)切球,則這個球的體積為()A. B. C. D.7.某學(xué)生用隨機模擬的方法推算圓周率的近似值,在邊長為的正方形內(nèi)有一內(nèi)切圓,向正方形內(nèi)隨機投入粒芝麻,(假定這些芝麻全部落入該正方形中)發(fā)現(xiàn)有粒芝麻落入圓內(nèi),則該學(xué)生得到圓周率的近似值為()A. B. C. D.8.將函數(shù)的圖象向右平移個單位長度得到圖象,則函數(shù)的解析式是()A. B.C. D.9.關(guān)于x的不等式的解集是,則關(guān)于x的不等式的解集是()A. B.C. D.10.把函數(shù)的圖像上所有的點向左平行移動個單位長度,再把所得圖像上所有點的橫坐標縮短到原來的(縱坐標不變),得到的圖像所表示的函數(shù)是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,且,則_______.12.若,則______.13.如圖,將一個長方體用過相鄰三條棱的中點的平面截出一個棱錐,則該棱錐的體積與剩下的幾何體體積的比為________.14.若角的終邊經(jīng)過點,則___________.15.設(shè),過定點A的動直線和過定點B的動直線交于點,則的最大值是.16.數(shù)列滿足:,,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.2021年廣東新高考將實行“”模式,即語文、數(shù)學(xué)、英語必選,物理、歷史二選一,政治、地理、化學(xué)、生物四選二,共選六科參加高考.其中偏理方向是二選一時選物理,偏文方向是二選一時選歷史,對后四科選擇沒有限定.(1)小明隨機選課,求他選擇偏理方向及生物學(xué)科的概率;(2)小明、小吳同時隨機選課,約定選擇偏理方向及生物學(xué)科,求他們選課相同的概率.18.如圖,在矩形ABCD中,AB=3,BC=2,點M,N分別是邊AB,CD上的點,且MN∥BC,.若將矩形ABCD沿MN折起使其形成60°的二面角(如圖).(1)求證:平面CND⊥平面AMND;(2)求直線MC與平面AMND所成角的正弦值.19.已知分別是數(shù)列的前項和,且.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和.20.已知公差不為零的等差數(shù)列滿足:,且成等比數(shù)列.(1)求數(shù)列的通項公式.(2)記為數(shù)列的前項和,是否存在正整數(shù),使得?若存在,請求出的最小值;若不存在,請說明理由.21.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

據(jù)投籃成績的條形統(tǒng)計圖,結(jié)合中位數(shù)的定義,對選項中的命題分析、判斷即可.【詳解】根據(jù)投籃成績的條形統(tǒng)計圖,3球以下(含3球)的人數(shù)為,6球以下(含6球)的人數(shù)為,結(jié)合中位數(shù)是5知4球以下(含4球)的人數(shù)為不多于17,而由條形統(tǒng)計圖得4球以下(含4球)的人數(shù)不少于,因此4球以下(含4球)的人數(shù)為17所以5球的人數(shù)和6球的人數(shù)一共是17,顯然5球的人數(shù)和6球的人數(shù)不一樣多,故選D.【點睛】本題考查命題真假的判斷,考查條形統(tǒng)計圖、中位數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.2、B【解析】

假設(shè)樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,根據(jù)題意求出數(shù)列的遞推公式,利用遞推公式求出數(shù)列的通項公式,從而得出的值,可得出結(jié)果.【詳解】假設(shè)樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,可這樣操作,先將個圓環(huán)從木樁全部套到木樁上,至少需要的次數(shù)為,然后將最大的圓環(huán)從木樁套在木樁上,需要次,在將木樁上個圓環(huán)從木樁套到木樁上,至少需要的次數(shù)為,所以,,易知.設(shè),得,對比得,,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故選:B.【點睛】本題考查數(shù)列遞推公式的應(yīng)用,同時也考查了利用待定系數(shù)法求數(shù)列的通項,解題的關(guān)鍵就是利用題意得出數(shù)列的遞推公式,考查推理能力與運算求解能力,屬于中等題.3、C【解析】作出不等式區(qū)域如圖所示:求目標函數(shù)的最小值等價于求直線的最小縱截距.平移直線經(jīng)過點A(-2,0)時最小為-2.故選C.4、B【解析】

把函數(shù)的解析式利用輔助角公式化成余弦型函數(shù)解析式形式,然后求出向右平移個單位后函數(shù)的解析式,根據(jù)題意,利用余弦型函數(shù)的性質(zhì)求解即可.【詳解】,該函數(shù)求出向右平移個單位后得到新函數(shù)的解析式為:,由題意可知:函數(shù)的圖象關(guān)于軸對稱,所以有當時,有最小值,最小值為.故選:B【點睛】本題考查了余弦型函數(shù)的圖象平移,考查了余弦型函數(shù)的性質(zhì),考查了數(shù)學(xué)運算能力.5、D【解析】

先證明棱柱為直棱柱,再求出棱柱外接球的半徑,利用基本不等式求出其最小值.【詳解】∵三棱柱內(nèi)接于球,∴棱柱各側(cè)面均為平行四邊形且內(nèi)接于圓,所以棱柱的側(cè)棱都垂直底面,所以該三棱柱為直三棱柱.設(shè)底面三角形的兩條直角邊長為,,∵三棱柱的高為2,體積是1,∴,即,將直三棱柱補成一個長方體,則直三棱柱與長方體有同一個外接球,所以球的半徑為.故選D【點睛】本題主要考查幾何體外接球的半徑的計算和基本不等式求最值,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、A【解析】

棱長為的正方體的內(nèi)切球的半徑,由此能求出其體積.【詳解】棱長為的正方體的內(nèi)切球的半徑==1,體積.故選:A.【點睛】本題考查了正方體的內(nèi)切球的性質(zhì)和應(yīng)用,屬于基礎(chǔ)題.7、B【解析】

由落入圓內(nèi)的芝麻數(shù)占落入正方形區(qū)域內(nèi)的芝麻數(shù)的比例等于圓的面積與正方形的面積比相等,列等式求出的近似值.【詳解】邊長為的正方形內(nèi)有一內(nèi)切圓的半徑為,圓的面積為,正方形的面積為,由幾何概型的概率公式可得,得,因此,該學(xué)生得到圓周率的近似值為,故選:B.【點睛】本題考查利用隨機模擬思想求圓周率的近似值,解題的關(guān)鍵就是利用概率相等結(jié)合幾何概型的概率公式列等式求解,考查計算能力,屬于基礎(chǔ)題.8、C【解析】

由題意利用三角函數(shù)的圖象變換原則,即可得出結(jié)論.【詳解】由題意,將函數(shù)的圖象向右平移個單位長度,可得.故選C.【點睛】本題主要考查三角函數(shù)的圖像變換,熟記圖像變換原則即可,屬于??碱}型.9、D【解析】

由不等式與方程的關(guān)系可得且,則等價于,再結(jié)合二次不等式的解法求解即可.【詳解】解:由關(guān)于x的不等式的解集是,由不等式與方程的關(guān)系可得且,則等價于等價于,解得,即關(guān)于x的不等式的解集是,故選:D.【點睛】本題考查了不等式與方程的關(guān)系,重點考查了二次不等式的解法,屬基礎(chǔ)題.10、C【解析】

根據(jù)左右平移和周期變換原則變換即可得到結(jié)果.【詳解】向左平移個單位得:將橫坐標縮短為原來的得:本題正確選項:【點睛】本題考查三角函數(shù)的左右平移變換和周期變換的問題,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、-2或3【解析】

用坐標表示向量,然后根據(jù)垂直關(guān)系得到坐標運算關(guān)系,求出結(jié)果.【詳解】由題意得:或本題正確結(jié)果:或【點睛】本題考查向量垂直的坐標表示,屬于基礎(chǔ)題.12、【解析】

,則,故答案為.13、【解析】

求出長方體體積與三棱錐的體積后即可得到棱錐的體積與剩下的幾何體體積之比.【詳解】設(shè)長方體長寬高分別為,,,所以長方體體積,三棱錐體積,所以棱錐的體積與剩下的幾何體體積的之比為:.故答案為:.【點睛】本題主要考查了長方體體積公式,三棱錐體積公式,屬于基礎(chǔ)題.14、3【解析】

直接根據(jù)任意角三角函數(shù)的定義求解,再利用兩角和的正切展開代入求解即可【詳解】由任意角三角函數(shù)的定義可得:.則故答案為3【點睛】本題主要考查了任意角三角函數(shù)的定義和兩角和的正切計算,熟記公式準確計算是關(guān)鍵,屬于基礎(chǔ)題.15、5【解析】試題分析:易得.設(shè),則消去得:,所以點P在以AB為直徑的圓上,,所以,.法二、因為兩直線的斜率互為負倒數(shù),所以,點P的軌跡是以AB為直徑的圓.以下同法一.【考點定位】1、直線與圓;2、重要不等式.16、【解析】

可通過賦值法依次進行推導(dǎo),找出數(shù)列的周期,進而求解【詳解】由,,當時,;當時,;當時,;當時,;當時,,當故數(shù)列從開始,以3為周期故故答案為:【點睛】本題考查數(shù)列的遞推公式,能根據(jù)遞推公式找出數(shù)列的規(guī)律是解題的關(guān)鍵,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用列舉法,列舉出偏理方向和偏文方向的所有情況,即可求得小明選擇偏理方向且選擇了生物學(xué)科的概率.(2)利用列舉法,列舉出兩個人選擇偏理方向且?guī)в猩飳W(xué)科的所有可能,即可求得兩人選課相同的概率.【詳解】(1)由題意知,選六科參加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六種選擇;偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六種選擇.由以上可知共有12種選課模式.小明選擇偏理方向又選擇生物的概率為.(2)小明選擇偏理且有生物學(xué)科的可能有:(物,政,生)、(物,地,生)、(物,化,生)三種選擇,同樣小吳也是三種選擇;兩人選課模式有:[(物,政,生),(物,政,生)]、[(物,政,生),(物,地,生]、[(物,政,生),(物,化,生)]、[(物,地,生),(物,政,生)]、[(物,地,生),(物,地,生)[(物,地,生),(物,化,生)]、[(物,化,生),(物,政,生)]、[(物,化,生),(物,地,生)[(物,化,生),(物,化,生)]由以上可知共有9種選課法,兩人選課相同有三種,所以兩人選課相同的概率.【點睛】本題考查了古典概型概率的求法,利用列舉法寫出所有可能即可求解,屬于基礎(chǔ)題.18、(1)見解析;(2).【解析】

(1)轉(zhuǎn)化為證明MN⊥平面CND;(2)過點C作CH⊥ND與點H,則MH是MC在平面AMND內(nèi)的射影,所以∠CMH即直線MC與平面AMND所成的角.【詳解】(1)∵在矩形ABCD中,MN∥BC,∴MN⊥ND,MN⊥NC,又∵ND,NC是平面CND內(nèi)的兩條相交直線,∴MN⊥平面CND,又MN平面AMND,∴平面CND⊥平面AMND.(2)由(1)知∠CND=60°,又,AB=3,BC=2,MN∥BC,所以CN=1,DN=2,由余弦定理得,所以∠DCN=90°,過點C作CH⊥ND與點H,連接MH,則∠CMH即直線MC與平面AMND所成的角,又,所以故直線MC與平面AMND所成角的正弦值為.【點睛】本題考查面面平行證明和線面角.面面平行證明要轉(zhuǎn)化為線面平行證明;求線面角關(guān)鍵在于作出直線在平面內(nèi)的射影.19、(1),,(2)【解析】

(1)分別求出和時的,,再檢驗即可.(2)利用錯位相減法即可求出數(shù)列的前項和【詳解】(1)當時,,當時,.檢驗:當時,,所以.因為,所以.當時,,即,當時,整理得到:.所以數(shù)列是以首項為,公差為的等差數(shù)列.所以,即.(2)…………①,……②,①②得:……,,.【點睛】本題第一問考查由數(shù)列前項和求數(shù)列的通項公式,第二問考查數(shù)列求和中的錯位相減法,屬于難題.20、(1)(2)存在,最小值是.【解析】

(1)利用等比中項的性質(zhì)列方程,將已知條件轉(zhuǎn)化為的形式列方程組,解方程組求得,由此求得數(shù)列的通項公式.(2)首先求得數(shù)列的前項和,由列不等式,解一元二次不等式求得的取值范圍,由此求得的最小值.【詳解】(1)設(shè)等差數(shù)列的公差為(),由題意得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論