版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省梁山一中、嘉祥一中2025屆高一下數(shù)學期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.802.已知圓內(nèi)接四邊形ABCD各邊的長度分別為AB=5,BC=8,CD=3,DA=5,則AC的長為()A.6 B.7 C.8 D.93.已知函數(shù)的圖像關(guān)于直線對稱,則可能取值是().A. B. C. D.4.某型號汽車使用年限與年維修費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表,由最小二乘法求得回歸方程.現(xiàn)發(fā)現(xiàn)表中有一個數(shù)據(jù)看不清,推測該數(shù)據(jù)的值為()使用年限維修費A. B.C. D.5.已知a、b、c分別是△ABC的內(nèi)角A、B、C的對邊,若,則的形狀為()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形6.已知平行四邊形對角線與交于點,設(shè),,則()A. B. C. D.7.如圖,,是半徑為2的圓周上的定點,為圓周上的動點且,,則圖中陰影區(qū)域面積的最大值為()A. B. C. D.8.已知,則點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.采用系統(tǒng)抽樣方法從人中抽取32人做問卷調(diào)查,為此將他們隨機編號為,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為.抽到的人中,編號落入?yún)^(qū)間的人做問卷,編號落入?yún)^(qū)間的人做問卷,其余的人做問卷.則抽到的人中,做問卷的人數(shù)為()A. B. C. D.10.在棱長為1的正方體中,點在線段上運動,則下列命題錯誤的是()A.異面直線和所成的角為定值 B.直線和平面平行C.三棱錐的體積為定值 D.直線和平面所成的角為定值二、填空題:本大題共6小題,每小題5分,共30分。11.在中,內(nèi)角,,的對邊分別為,,.若,,成等比數(shù)列,且,則________.12.函數(shù)是定義域為R的奇函數(shù),當時,則的表達式為________.13.在中,角,,所對的邊分別為,,,若,則角最大值為______.14.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0的公共弦的長為___.15.若點,是圓C:上不同的兩點,且,則的值為______.16.若正四棱錐的底面邊長為,側(cè)棱長為,則該正四棱錐的體積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知定義域為的函數(shù)在上有最大值1,設(shè).(1)求的值;(2)若不等式在上恒成立,求實數(shù)的取值范圍;(3)若函數(shù)有三個不同的零點,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).18.已知函數(shù)=的定義域為=的定義域為(其中為常數(shù)).(1)若,求及;(2)若,求實數(shù)的取值范圍.19.在中,內(nèi)角、、所對的邊分別為、、,且.(1)求;(2)若,,求.20.中,角所對的邊分別為,已知.(1)求角的大?。唬?)若,求面積的最大值.21.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.2、B【解析】
分別在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【詳解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故選B.【點睛】本題考查了余弦定理的應(yīng)用,三角形的解法,考查了圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,屬于中檔題.3、D【解析】
根據(jù)正弦型函數(shù)的對稱性,可以得到一個等式,結(jié)合四個選項選出正確答案.【詳解】因為函數(shù)的圖像關(guān)于直線對稱,所以有,當時,,故本題選D.【點睛】本題考查了正弦型函數(shù)的對稱性,考查了數(shù)學運算能力.4、C【解析】
設(shè)所求數(shù)據(jù)為,計算出和,然后將點代入回歸直線方程可求出的值.【詳解】設(shè)所求數(shù)據(jù)為,則,,由于回歸直線過樣本的中心點,則有,解得,故選:C.【點睛】本題考查利用回歸直線計算原始數(shù)據(jù),解題時要充分利用“回歸直線過樣本中心點”這一結(jié)論的應(yīng)用,考查運算求解能力,屬于基礎(chǔ)題.5、A【解析】
將原式進行變形,再利用內(nèi)角和定理轉(zhuǎn)化,最后可得角B的范圍,可得三角形形狀.【詳解】因為在三角形中,變形為由內(nèi)角和定理可得化簡可得:所以所以三角形為鈍角三角形故選A【點睛】本題考查了解三角形,主要是公式的變形是解題的關(guān)鍵,屬于較為基礎(chǔ)題.6、B【解析】
根據(jù)向量減法的三角形法則和數(shù)乘運算直接可得結(jié)果.【詳解】本題正確選項:【點睛】本題考查向量的線性運算問題,涉及到向量的減法和數(shù)乘運算的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,運用扇形面積公式和三角形的面積公式,計算可得所求最大值.【詳解】由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,即有,到線段的距離為,,扇形的面積為,的面積為,,即有陰影區(qū)域的面積的最大值為.故選.【點睛】本題考查扇形面積公式和三角函數(shù)的恒等變換,考查化簡運算能力,屬于中檔題.8、B【解析】∵,∴,,,∴,∴點在第二象限,故選B.點睛:本題主要考查了由三角函數(shù)值的符號判斷角的終邊位置,屬于基礎(chǔ)題;三角函數(shù)值符號記憶口訣記憶技巧:一全正、二正弦、三正切、四余弦(為正).即第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.9、C【解析】從960人中用系統(tǒng)抽樣方法抽取32人,則抽樣距為k=,因為第一組號碼為9,則第二組號碼為9+1×30=39,…,第n組號碼為9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人).考點:系統(tǒng)抽樣.10、D【解析】
結(jié)合條件和各知識點對四個選項逐個進行分析,即可得解.【詳解】,在棱長為的正方體中,點在線段上運動易得平面,平面,,故這兩個異面直線所成的角為定值,故正確,直線和平面平行,所以直線和平面平行,故正確,三棱錐的體積還等于三棱錐的體積,而平面為固定平面且大小一定,,而平面點到平面的距離即為點到該平面的距離,三棱錐的體積為定值,故正確,由線面夾角的定義,令與的交點為,可得即為直線和平面所成的角,當移動時這個角是變化的,故錯誤故選【點睛】本題考查了異面直線所成角的概念、線面平行及線面角等,三棱錐的體積的計算可以進行頂點輪換及線面平行時,直線上任意一點到平面的距離都相等這一結(jié)論,即等體積法的轉(zhuǎn)換.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
A,B,C是三角形內(nèi)角,那么,代入等式中,進行化簡可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【詳解】因為,所以,所以.因為,,成等比數(shù)列,所以,所以,則,整理得,解得.【點睛】本題考查正弦定理和等比數(shù)列運用,有一定的綜合性.12、【解析】試題分析:當時,,,因是奇函數(shù),所以,是定義域為R的奇函數(shù),所以,所以考點:函數(shù)解析式、函數(shù)的奇偶性13、【解析】
根據(jù)余弦定理列式,再根據(jù)基本不等式求最值【詳解】因為所以角最大值為【點睛】本題考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,屬中檔題14、【解析】
兩圓方程相減求出公共弦所在直線的解析式,求出第一個圓心到直線的距離,再由第一個圓的半徑,利用勾股定理及垂徑定理即可求出公共弦長.【詳解】圓與圓的方程相減得:,由圓的圓心,半徑r為2,且圓心到直線的距離,則公共弦長為.故答案為.【點睛】此題考查了直線與圓相交的性質(zhì),求出公共弦所在的直線方程是解本題的關(guān)鍵.15、【解析】
由,再結(jié)合坐標運算即可得解.【詳解】解:因為點,是圓C:上不同的兩點,則,,又所以,即,故答案為:.【點睛】本題考查了向量模的運算,重點考查了運算能力,屬基礎(chǔ)題.16、4.【解析】
設(shè)正四棱錐的高為PO,連結(jié)AO,在直角三角形POA中,求得高,利用體積公式,即可求解.【詳解】由題意,如圖所示,正四棱錐P-ABCD中,AB=,PA=設(shè)正四棱錐的高為PO,連結(jié)AO,則AO=,在直角三角形POA中,,∴.【點睛】本題主要考查了正棱錐體積的計算,其中解答中熟記正棱錐的性質(zhì),以及棱錐的體積公式,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0;(2);(3)【解析】
(1)結(jié)合二次函數(shù)的性質(zhì)可判斷g(x)在[1,2]上的單調(diào)性,結(jié)合已知函數(shù)的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,結(jié)合對數(shù)與二次函數(shù)的性質(zhì)可求;(3)原方程可化為|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)=0,利用換元q=|ex﹣1|,結(jié)合二次函數(shù)的實根分布即可求解.【詳解】(1)因為在上是增函數(shù),所以,解得.(2)由(1)可得:所以不等式在上恒成立.等價于在上恒成立令,因為,所以則有在恒成立令,,則所以,即,所以實數(shù)的取值范圍為.(3)因為令,由題意可知令,則函數(shù)有三個不同的零點等價于在有兩個零點,當,此時方程,此時關(guān)于方程有三個零點,符合題意;當記為,,且,,所以,解得綜上實數(shù)的取值范圍.【點睛】本題主要考查了二次函數(shù)的單調(diào)性的應(yīng)用,不等式中的恒成立問題與最值的相互轉(zhuǎn)化,二次函數(shù)的實根分布問題等知識的綜合應(yīng)用,是中檔題18、(1);=.(2)【解析】試題分析:(1)先根據(jù)偶次根式非負得不等式,解不等式得A,B,再結(jié)合數(shù)軸求交,并,補(2)先根據(jù)得,再根據(jù)數(shù)軸得實數(shù)的取值范圍.試題解析:(1)若,則由已知有因此;,所以=.(2)∴,又==∴19、(1)(2)【解析】
(1)利用正弦定理化簡為,再利用余弦定理得到答案.(2)先用和差公式計算,再利用正弦定理得到.【詳解】(1)由正弦定理,可化為,得,由余弦定理可得,有又由,可得.(2)由,由正弦定理有.【點睛】本題考查了正弦定理,余弦定理,和差公式,意在考查學生的計算能力.20、(1);(2).【解析】
(1)由正弦定理化邊為角,再由同角間的三角函數(shù)關(guān)系化簡可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面積最大值.【詳解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,當且僅當時等號成立.∴,,最大值為.【點睛】本題考查正弦定理和余弦定理,考查同角間的三角函數(shù)關(guān)系,考查基本不等式求最值.本題主要是考查的公式較多,掌握所有公式才能正確解題.本題屬于中檔題.21、(Ⅰ).=.(Ⅱ).【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國室內(nèi)門行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2024-2030年中國地波那非酮項目可行性研究報告
- 2024-2030年中國雙耳環(huán)行業(yè)發(fā)展狀況規(guī)劃分析報告
- 眉山職業(yè)技術(shù)學院《系統(tǒng)仿真技術(shù)》2023-2024學年第一學期期末試卷
- 2024年版風力發(fā)電項目施工合同詳細條款
- 馬鞍山職業(yè)技術(shù)學院《納米科學技術(shù)導論》2023-2024學年第一學期期末試卷
- 呂梁學院《藥物化學(I)》2023-2024學年第一學期期末試卷
- 2024年建筑行業(yè)工程承包協(xié)議更新版版B版
- 2021-2022學年云南省文山壯族苗族自治州高一上學期期中語文試題
- 洛陽商業(yè)職業(yè)學院《小學數(shù)學教學設(shè)計與技能訓練》2023-2024學年第一學期期末試卷
- 2022年度尾礦庫安全風險辨識及分級管控表
- 職業(yè)學院食品藥品監(jiān)督管理專業(yè)核心課《企業(yè)管理》課程標準
- 投標項目進度計劃
- 關(guān)于發(fā)展鄉(xiāng)村產(chǎn)業(yè)的建議
- 登泰山記-教學課件
- 2024版水電費繳費協(xié)議范本
- 北師大版四年級數(shù)學上冊第五單元《方向與位置》(大單元教學設(shè)計)
- 2024年西安交大少年班選拔考試語文試卷試題(含答案詳解)
- 2024年云南省昆明滇中新區(qū)公開招聘20人歷年重點基礎(chǔ)提升難、易點模擬試題(共500題)附帶答案詳解
- 2024年國開思政課《馬克思主義基本原理》大作業(yè)、形考及學習行為表現(xiàn)試題及答案請理論聯(lián)系實際談一談你對實踐的理解
- 2024屆浙江高考英語寫作分類訓練:建議信(含答案)
評論
0/150
提交評論