版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
北京市五十七中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.四邊形,,,,則的外接圓與的內(nèi)切圓的公共弦長()A. B. C. D.2.已知函數(shù),,的零點分別為a,b,c,則()A. B. C. D.3.在中,內(nèi)角的對邊分別為,且,,若,則()A.2 B.3 C.4 D.4.已知變量滿足約束條件,則的最大值為()A.8 B.7 C.6 D.45.若,則t=()A.32 B.23 C.14 D.136.當(dāng)為第二象限角時,的值是().A. B. C. D.7.已知數(shù)列(,)具有性質(zhì):對任意、(),與兩數(shù)中至少有一個是該數(shù)列中的一項,對于命題:①若數(shù)列具有性質(zhì),則;②若數(shù)列,,()具有性質(zhì),則;下列判斷正確的是()A.①和②均為真命題 B.①和②均為假命題C.①為真命題,②為假命題 D.①為假命題,②為真命題8.一個體積為的正三棱柱(底面為正三角形,且側(cè)棱垂直于底面的棱柱)的三視圖如圖所示,則該三棱柱的側(cè)視圖的面積為()A. B.3 C. D.129.在某種新型材料的研制中,實驗人員獲得了下列一組實驗數(shù)據(jù):現(xiàn)準(zhǔn)備用下列四個函數(shù)中的一個近似地表示這些數(shù)據(jù)的規(guī)律,其中最接近的一個是()345.156.1264.04187.51218.01A. B. C. D.10.已知數(shù)列且是首項為2,公差為1的等差數(shù)列,若數(shù)列是遞增數(shù)列,且滿足,則實數(shù)a的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.己知為數(shù)列的前項和,且,則_____.12.已知的圓心角所對的弧長等于,則該圓的半徑為______.13.設(shè)是等差數(shù)列的前項和,若,則___________.14.正六棱柱各棱長均為,則一動點從出發(fā)沿表面移動到時的最短路程為__________.15.已知向量,,,則_________.16.已知關(guān)于實數(shù)x,y的不等式組構(gòu)成的平面區(qū)域為,若,使得恒成立,則實數(shù)m的最小值是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三棱柱的側(cè)面是邊長為2的菱形,,且.(1)求證:;(2)若,當(dāng)二面角為直二面角時,求三棱錐的體積.18.設(shè)O為坐標(biāo)原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.(1)求點P的軌跡方程;(2)設(shè)點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.19.?dāng)?shù)列中,,.前項和滿足.(1)求(用表示);(2)求證:數(shù)列是等比數(shù)列;(3)若,現(xiàn)按如下方法構(gòu)造項數(shù)為的有窮數(shù)列,當(dāng)時,;當(dāng)時,.記數(shù)列的前項和,試問:是否能取整數(shù)?若能,請求出的取值集合:若不能,請說明理由.20.如圖,在正方體中,是的中點,在上,且.(1)求證:平面;(2)在線段上存在一點,,若平面,求實數(shù)的值.21.已知分別為內(nèi)角的對邊試從下列①②條件中任選一個作為已知條件并完成下列(1)(2)兩問的解答①;②.(1)求角(2)若,,求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
以為坐標(biāo)原點,以為軸,軸建立平面直角坐標(biāo)系,求出的外接圓與的內(nèi)切圓的方程,兩圓方程相減可得公共弦所在直線方程,求出弦心距,進而可得公共弦長.【詳解】解:以為坐標(biāo)原點,以為軸,軸建立平面直角坐標(biāo)系,過作交于點,則,故,則為等邊三角形,故,的外接圓方程為,①的內(nèi)切圓方程為,②①-②得兩圓的公共弦所在直線方程為:,的外接圓圓心到公共弦的距離為,公共弦長為,故答案為:C.【點睛】本題考查兩圓公共弦長的求解,關(guān)鍵是要求出兩圓的公共弦所在直線方程,將兩圓方程作差即可得到,是中檔題.2、B【解析】
,,分別為,,的根,作出,,的圖象與直線,觀察交點的橫坐標(biāo)的大小關(guān)系.【詳解】由題意可得,,分別為,,的根,作出,,,的圖象,與直線的交點的橫坐標(biāo)分別為,,,由圖象可得,故選:.【點睛】本題主要考查了函數(shù)的零點,函數(shù)的圖象,數(shù)形結(jié)合思想,屬于中檔題.3、B【解析】
利用正弦定理化簡,由此求得的值.利用三角形內(nèi)角和定理和兩角和與差的正弦公式化簡,由此求得的值,進而求得的值.【詳解】利用正弦定理化簡得,所以為銳角,且.由于,所以由得,化簡得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查三角形內(nèi)角和定理,考查兩角和與差的正弦公式,屬于中檔題.4、B【解析】
先畫出滿足約束條件的平面區(qū)域,然后求出目標(biāo)函數(shù)取最大值時對應(yīng)的最優(yōu)解點的坐標(biāo),代入目標(biāo)函數(shù)即可求出答案.【詳解】滿足約束條件的平面區(qū)域如下圖所示:作直線把直線向上平移可得過點時最小當(dāng),時,取最大值1,故答案為1.【點睛】本題考查的知識點是簡單線性規(guī)劃,其中畫出滿足約束條件的平面區(qū)域,找出目標(biāo)函數(shù)的最優(yōu)解點的坐標(biāo)是解答本題的關(guān)鍵.5、B【解析】
先計算得到,再根據(jù)得到等式解得答案.【詳解】故答案選B【點睛】本題考查了向量的計算,意在考查學(xué)生對于向量運算法則的靈活運用及計算能力.6、C【解析】
根據(jù)為第二象限角,,,去掉絕對值,即可求解.【詳解】因為為第二象限角,∴,,∴,故選C.【點睛】本題重點考查三角函數(shù)值的符合,三角函數(shù)在各個象限內(nèi)的符號可以結(jié)合口訣:一全正,二正弦,三正切,四余弦,增加記憶印象,屬于基礎(chǔ)題7、A【解析】
本題是一種重新定義問題,要我們理解題目中所給的條件,解決后面的問題,把后面的問題挨個驗證.【詳解】解:①若數(shù)列具有性質(zhì),取數(shù)列中最大項,則與兩數(shù)中至少有一個是該數(shù)列中的一項,而不是該數(shù)列中的項,是該數(shù)列中的項,又由,;故①正確;②數(shù)列,,具有性質(zhì),,與至少有一個是該數(shù)列中的一項,且,若是該數(shù)列中的一項,則,,易知不是該數(shù)列的項,.若是該數(shù)列中的一項,則或或,a、若同,b、若,則,與矛盾,c、,則,綜上.故②正確.故選:.【點睛】考查數(shù)列的綜合應(yīng)用,此題能很好的考查學(xué)生的應(yīng)用知識分析、解決問題的能力,側(cè)重于對能力的考查,屬中檔題.8、A【解析】
根據(jù)側(cè)視圖的寬為求出正三角形的邊長為4,再根據(jù)體積求出正三棱柱的高,再求側(cè)視圖的面積?!驹斀狻總?cè)視圖的寬即為俯視圖的高,即三角形的邊長為4,又側(cè)視圖的面積為:【點睛】理解:側(cè)視圖的寬即為俯視圖的高,即可求解本題。9、A【解析】
由表中的數(shù)據(jù)分析得:自變量基本上是等速增加,相應(yīng)的函數(shù)值增加的速度越來越快,結(jié)合基本初等函數(shù)的單調(diào)性,即可得出答案.【詳解】對于A:函數(shù)在是單調(diào)遞增,且函數(shù)值增加速度越來越快,將自變量代入,相應(yīng)的函數(shù)值,比較接近,符合題意,所以正確;對于B:函數(shù)值隨著自變量增加是等速的,不合題意;對于C:函數(shù)值隨著自變量的增加比線性函數(shù)還緩慢,不合題意;選項D:函數(shù)值隨著自變量增加反而減少,不合題意.故選:A.【點睛】本題考查函數(shù)模型的選擇和應(yīng)用問題,解題的關(guān)鍵是掌握各種基本初等函數(shù),如一次函數(shù),二次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.10、D【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義可確定是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列通項公式,進而求得;由數(shù)列的單調(diào)性可知;分別在和兩種情況下討論可得的取值范圍.【詳解】由題意得:,,是以為首項,為公比的等比數(shù)列為遞增數(shù)列,即①當(dāng)時,,,即只需即可滿足②當(dāng)時,,,即只需即可滿足綜上所述:實數(shù)的取值范圍為故選:【點睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問題,涉及到等差和等比數(shù)列定義的應(yīng)用、等比數(shù)列通項公式的求解、對數(shù)運算法則的應(yīng)用等知識;解題關(guān)鍵是能夠根據(jù)單調(diào)性得到關(guān)于變量和的關(guān)系式,進而通過分離變量的方式將問題轉(zhuǎn)化為變量與關(guān)于的式子的最值的大小關(guān)系問題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)可知,得到數(shù)列為等差數(shù)列;利用等差數(shù)列前項和公式構(gòu)造方程可求得;利用等差數(shù)列通項公式求得結(jié)果.【詳解】由得:,即:數(shù)列是公差為的等差數(shù)列又,解得:本題正確結(jié)果:【點睛】本題考查等差數(shù)列通項公式、前項和公式的應(yīng)用,關(guān)鍵是能夠利用判斷出數(shù)列為等差數(shù)列,進而利用等差數(shù)列中的相關(guān)公式來進行求解.12、【解析】
先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【點睛】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.13、1.【解析】
由已知結(jié)合等差數(shù)列的性質(zhì)求得,代入等差數(shù)列的前項和得答案.【詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【點睛】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),考查了等差數(shù)列前項和的求法,屬于基礎(chǔ)題.14、【解析】
根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側(cè)面和上表面到D1的路程最短為故答案為:.【點睛】本題主要考查了空間幾何體展形圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.15、【解析】
根據(jù)向量平行交叉相乘相減等于0即可.【詳解】因為兩個向量平行,所以【點睛】本題主要考查了向量的平行,即,若則,屬于基礎(chǔ)題.16、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點與定點距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點與定點距離的平方,由圖像易知,點到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點睛】本題主要考查簡單的線性規(guī)劃問題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來求解,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)連結(jié),交于點,連結(jié),推導(dǎo)出,又,從而面,進而,推導(dǎo)出,由此能得到結(jié)論;(2)由題意,可證得是二面角的平面角,進而得,進而計算得,進而利用棱錐的體積公式計算即可.【詳解】(1)連結(jié),交于點,連結(jié),因為側(cè)面是菱形,所以,又因為,,所以面而平面,所以,因為,所以,而,所以,故.(2)因為,為的中點,則,由(1)可知,因為,所以面,作,連結(jié),由(1)知,所以且所以是二面角的平面角,依題意得,,所以,設(shè),則,,又由,,所以由,解得,所以.【點睛】本題考查兩個角相等的證明,考查三棱錐的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.18、(1);(2)見解析.【解析】
試題分析:(1)轉(zhuǎn)移法求軌跡:設(shè)所求動點坐標(biāo)及相應(yīng)已知動點坐標(biāo),利用條件列兩種坐標(biāo)關(guān)系,最后代入已知動點軌跡方程,化簡可得所求軌跡方程;(2)證明直線過定點問題,一般方法是以算代證:即證,先設(shè)P(m,n),則需證,即根據(jù)條件可得,而,代入即得.試題解析:解:(1)設(shè)P(x,y),M(),則N(),由得.因為M()在C上,所以.因此點P的軌跡為.由題意知F(-1,0),設(shè)Q(-3,t),P(m,n),則,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又過點P存在唯一直線垂直于OQ,所以過點P且垂直于OQ的直線l過C的左焦點F.點睛:定點、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒成立的.定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結(jié)果,因此求解時應(yīng)設(shè)參數(shù),運用推理,到最后必定參數(shù)統(tǒng)消,定點、定值顯現(xiàn).19、(1)(2)證明見詳解.(3)能取整數(shù),此時的取值集合為.【解析】
(1)利用遞推關(guān)系式,令,通過,求出即可.(2)遞推關(guān)系式轉(zhuǎn)化為:,化簡推出數(shù)列是等比數(shù)列.(3)由,求出,求出,得到通項公式,然后求解的分母與分子,討論要使取整數(shù),需為整數(shù),推出的取值集合為時,取整數(shù)【詳解】解:(1)令,則,將,代入,有.解得:.(2)由得,化簡得,又,是等比數(shù)列.(3)由,,又是等比數(shù)列,,,①當(dāng)時,依次為,.②當(dāng)時,,,,要使取整數(shù),需為整數(shù),令,,,要么都為整數(shù),要么都不是整數(shù),又所以當(dāng)且僅當(dāng)為奇數(shù)時,為整數(shù),即的取值集合為時,取整數(shù).【點睛】本題主要考查利用遞推公式結(jié)合,為判斷等比數(shù)列,考查數(shù)列前項和的比的問題的轉(zhuǎn)化與化歸思想的綜合性解題能力.20、(1)證明見解析;(2)【解析】
(1)分別證明與即可.(2)設(shè)平面與的交點為,利用線面與面面平行的判定與性質(zhì)可知只需滿足,再利用平行所得的相似三角形對應(yīng)邊成比例求解即可.【詳解】(1)連接.因為正方體,故,且,又.故平面.又平面,故.同理,,,故.又,平面.故平面.(2)設(shè)平面與的交點為,連接.因為,平面,,故.又,故.設(shè)正方體邊長為6,則因為,故故,所以.又平面則只需即可.此時又因為,故四邊形為平行四邊形.故.此時.故.故【點睛】本題主要考查了線面垂直的證明以及根據(jù)線面平行求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人住宅小區(qū)地下車庫車位買賣協(xié)議范本2篇
- 2025年度個人帶車庫帶儲藏室公寓買賣協(xié)議
- 2025年度個人二手挖掘機買賣合同范本全新升級版2篇
- 2025年全球及中國智能安防巡檢機器人行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球胃電刺激裝置行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國可調(diào)鎖骨矯正器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2024年軍隊文職人員招聘考試題庫
- 2025年度頁巖磚生產(chǎn)廢棄物資源化利用技術(shù)研發(fā)合同4篇
- 2025年度老舊小區(qū)改造工程維修管理服務(wù)合同范本2篇
- 二零二五年度櫥柜品牌授權(quán)生產(chǎn)與銷售代理合同3篇
- 醫(yī)保政策與健康管理培訓(xùn)計劃
- 無人化農(nóng)場項目可行性研究報告
- 《如何存款最合算》課件
- 社區(qū)團支部工作計劃
- 拖欠工程款上訪信范文
- 2024屆上海市金山區(qū)高三下學(xué)期二模英語試題(原卷版)
- 學(xué)生春節(jié)安全教育
- 《wifi協(xié)議文庫》課件
- 《好東西》:女作者電影的話語建構(gòu)與烏托邦想象
- 教培行業(yè)研究系列(七):出國考培的再研究供需變化的新趨勢
- GB/T 44895-2024市場和社會調(diào)查調(diào)查問卷編制指南
評論
0/150
提交評論