版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省普洱市墨江第二中學數學高一下期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數,,的零點分別為a,b,c,則()A. B. C. D.2.若不等式的解集為空集,則實數a的取值范圍是()A. B. C. D.3.在等差數列中,若,且它的前項和有最大值,則使成立的正整數的最大值是()A.15 B.16 C.17 D.144.設等差數列的前項和為,若公差,,則的值為()A.65 B.62 C.59 D.565.在明朝程大位《算法統宗》中,有這樣一首歌謠,叫浮屠增級歌:遠看巍巍塔七層,紅光點點倍加增;共燈三百八十一,請問層三幾盞燈.這首古詩描述的浮屠,現稱寶塔.本浮屠增級歌意思是:有一座7層寶塔,每層懸掛的紅燈數是上一層的2倍,寶塔中共有燈381盞,問這個寶塔第3層燈的盞數有()A. B. C. D.6.已知,那么等于()A. B. C. D.57.已知是圓的一條弦,,則()A. B. C. D.與圓的半徑有關8.下列向量組中,能作為表示它們所在平面內的所有向量的基底的是()A., B.,C., D.,9.若集合A=x∈Nx-1≤1A.3 B.4 C.7 D.810.下列函數中是偶函數且最小正周期為的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的圓心角為,半徑為,則扇形的面積.12.在△ABC中,若,則△ABC的形狀是____.13.已知正三角形的邊長是2,點為邊上的高所在直線上的任意一點,為射線上一點,且.則的取值范圍是____14.某中學為了了解全校學生的閱讀情況,在全校采用隨機抽樣的方法抽取一個樣本進行問卷調查,并將他們在一個月內去圖書館的次數進行了統計,將學生去圖書館的次數分為5組:制作了如圖所示的頻率分布表,則抽樣總人數為_______.15.若關于的方程()在區(qū)間有實根,則最小值是____.16.一船自西向東勻速航行,上午10時到達一座燈塔的南偏西距塔64海里的處,下午2時到達這座燈塔的東南方向的處,則這只船的航行速度為__________海里/小時.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數.(1)求函數的最小正周期;(2)若函數在的最大值為2,求實數的值.18.已知向量,.(Ⅰ)求;(Ⅱ)若向量與垂直,求的值.19.如圖,在三棱柱中,側棱垂直于底面,,,分別是,的中點.(1)求證:平面平面;(2)求證:平面.20.寫出集合的所有子集.21.已知數列是等差數列,數列是等比數列,且,記數列的前項和為,數列的前項和為.(1)若,求序數的值;(2)若數列的公差,求數列的公比及.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
,,分別為,,的根,作出,,的圖象與直線,觀察交點的橫坐標的大小關系.【詳解】由題意可得,,分別為,,的根,作出,,,的圖象,與直線的交點的橫坐標分別為,,,由圖象可得,故選:.【點睛】本題主要考查了函數的零點,函數的圖象,數形結合思想,屬于中檔題.2、D【解析】
對分兩種情況討論分析得解.【詳解】當時,不等式為,所以滿足題意;當時,,綜合得.故選:D【點睛】本題主要考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、C【解析】
由題意可得,,且,由等差數列的性質和求和公式可得結論.【詳解】∵等差數列的前項和有最大值,∴等差數列為遞減數列,又,∴,,∴,又,,∴成立的正整數的最大值是17,故選C.【點睛】本題考查等差數列的性質,涉及等差數列的求和公式,屬中檔題.4、A【解析】
先求出,再利用等差數列的性質和求和公式可求.【詳解】,所以,故選A.【點睛】一般地,如果為等差數列,為其前項和,則有性質:(1)若,則;(2)且;(3)且為等差數列;(4)為等差數列.5、C【解析】
先根據等比數列的求和公式求出首項,再根據通項公式求解.【詳解】從第1層到塔頂第7層,每層的燈數構成一個等比數列,公比為,前7項的和為381,則,得第一層,則第三層,故選【點睛】本題考查等比數列的應用,關鍵在于理解題意.6、B【解析】
因為,所以,故選B.7、C【解析】
由數量積的幾何意義,利用外心的幾何特征計算即可得解.【詳解】是圓的一條弦,易知在方向上的投影恰好為,所以=||||==2.故選C.【點睛】本題考查了數量積的運算,利用定義求解要確定模長及夾角,屬于基礎題.8、B【解析】
以作為基底的向量需要是不共線的向量,可以從向量的坐標發(fā)現,,選項中的兩個向量均共線,得到正確結果是.【詳解】解:可以作為基底的向量需要是不共線的向量,中一個向量是零向量,兩個向量共線,不合要求中兩個向量是,,則故與不共線,故正確;中兩個向量是,兩個向量共線,項中的兩個向量是,兩個向量共線,故選:.【點睛】本題考查平面中兩向量的關系,屬于基礎題.9、A【解析】
先求出A∩B的交集,再依據求真子集個數公式求出,也可列舉求出?!驹斀狻緼=x∈Nx-1≤1A∩B=0,1,所以A∩B的真子集的個數為2【點睛】有限集合a1,a2,?10、A【解析】
本題首先可將四個選項都轉化為的形式,然后對四個選項的奇偶性以及周期性依次進行判斷,即可得出結果.【詳解】中,函數,是偶函數,周期為;中,函數是奇函數,周期;中,函數,是非奇非偶函數,周期;中,函數是偶函數,周期.綜上所述,故選A.【點睛】本題考查對三角函數的奇偶性以及周期性的判斷,考查三角恒等變換,偶函數滿足,對于函數,其最小正周期為,考查化歸與轉化思想,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:由題可知,;考點:扇形面積公式12、鈍角三角形【解析】
由,結合正弦定理可得,,由余弦定理可得可判斷的取值范圍【詳解】解:,由正弦定理可得,由余弦定理可得是鈍角三角形故答案為鈍角三角形.【點睛】本題主要考查了正弦定理、余弦定理的綜合應用在三角形的形狀判斷中的應用,屬于基礎題13、【解析】
以AB所在的直線為x軸,以AB的中點為坐標原點,AB的垂線為y軸,建立平面直角坐標系,求出A.C,P,Q的坐標,運用平面向量的坐標表示和性質,求出的表達式,利用判別式法求出的取值范圍.【詳解】以AB所在的直線為x軸,以AB的中點為坐標原點,AB的垂線為y軸,建立平面直角坐標系,如下圖所示:,設,,設,可得,由,可得即,,令,可得,當時,成立,當時,,即,,即,所以的取值范圍是.【點睛】本題考查了平面向量數量積的性質和運算,考查了平面向量模的取值范圍,構造函數,利用判別式法求函數的最值是解題的關鍵.14、20【解析】
總體人數占的概率是1,也可以理解成每個人在整體占的比重一樣,所以三組的頻率為:,共有14人,即14人占了整體的0.7,那么整體共有人?!驹斀狻壳叭M,即三組的頻率為:,,解得:【點睛】此題考查概率,通過部分占總體的概率即可計算出總體的樣本值,屬于簡單題目。15、【解析】
將看作是關于的直線方程,則表示點到點的距離的平方,根據距離公式可求出點到直線的距離最小,再結合對勾函數的單調性,可求出最小值?!驹斀狻繉⒖醋魇顷P于的直線方程,表示點與點之間距離的平方,點到直線的距離為,又因為,令,在上單調遞增,所以,所以的最小值為.【點睛】本題主要考查點到直線的距離公式以及對勾函數單調性的應用,意在考查學生轉化思想的的應用。16、【解析】由,行駛了4小時,這只船的航行速度為海里/小時.【點睛】本題為解直角三角形應用題,利用直角三角形邊角關系表示出兩點間的距離,在用輔助角公式變形求值,最后利用速度公式求出結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】
(1)根據二倍角公式進行整理化簡可得,從而可得最小正周期;(2)將通過換元的方式變?yōu)?,;討論對稱軸的具體位置,分別求解最大值,從而建立方程求得的值.【詳解】(1)最小正周期(2)令,則由得①當,即時當時,由,解得(舍去)②當,即時當時,由得,解得或(舍去)③當,即時當時,,由,解得綜上,或【點睛】本題考查正弦型函數最小正周期的求解、利用二次函數性質求解與三角函數有關的值域問題,解題關鍵是通過換元的方式將所求函數轉化為二次函數的形式,再利用對稱軸的位置進行討論;易錯點是忽略了換元后自變量的取值范圍.18、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的數量積的坐標表示進行計算;(Ⅱ)由垂直關系,得到坐標間的等式關系,然后計算出參數的值.【詳解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量與垂直,∴∴,∴【點睛】已知,若,則有;已知,若,則有.19、(1)證明見解析(2)證明見解析【解析】
(1)根據線面垂直的判斷定理得到平面;再由面面垂直的判定定理,即可得出結論成立;(2)取的中點,連接,,根據線面平行的判定定理,即可得出結論成立.【詳解】(1)在三棱柱中,底面,所以.又因為,所以平面;又平面,所以平面平面;(2)取的中點,連接,.因為,,分別是,,的中點,所以,且,.因為,且,所以,且,所以四邊形為平行四邊形,所以,又因為平面,平面,所以平面.【點睛】本題主要考查證明面面垂直,以及證明線面平行,熟記線面垂直、面面垂直的判定定理,以及線面平行的判定定理即可,屬于??碱}型.20、【解析】
根據集合的子集的定義列舉出即可.【詳解】集合的所有子集有:【點睛】本題考查了集合的子集的定義,掌握子集的定義是解題的關鍵,本題是一道
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣播電視傳輸與全球氣候變化宣傳考核試卷
- 2025年湘教新版必修1歷史下冊月考試卷含答案
- 2025年統編版2024必修4語文上冊階段測試試卷含答案
- 2025年新科版九年級生物下冊階段測試試卷含答案
- 2025年人教新起點選擇性必修3化學上冊月考試卷含答案
- 2025年粵教版八年級歷史下冊階段測試試卷含答案
- 2025年人教版必修1歷史下冊階段測試試卷
- 2025版民間借貸合同樣本四種借款人信用評估標準4篇
- 技術申請合同(2篇)
- 2025年度數據中心機房建設承包商借款合同模板3篇
- GB/T 43650-2024野生動物及其制品DNA物種鑒定技術規(guī)程
- 2024年南京鐵道職業(yè)技術學院高職單招(英語/數學/語文)筆試歷年參考題庫含答案解析
- 暴發(fā)性心肌炎查房
- 口腔醫(yī)學中的人工智能應用培訓課件
- 工程質保金返還審批單
- 【可行性報告】2023年電動自行車項目可行性研究分析報告
- 五月天歌詞全集
- 商品退換貨申請表模板
- 實習單位鑒定表(模板)
- 數字媒體應用技術專業(yè)調研方案
- 2023年常州市新課結束考試九年級數學試卷(含答案)
評論
0/150
提交評論