2023-2024學(xué)年上海市上海外國語附屬外國語學(xué)校高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2023-2024學(xué)年上海市上海外國語附屬外國語學(xué)校高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2023-2024學(xué)年上海市上海外國語附屬外國語學(xué)校高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2023-2024學(xué)年上海市上海外國語附屬外國語學(xué)校高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2023-2024學(xué)年上海市上海外國語附屬外國語學(xué)校高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年上海市上海外國語附屬外國語學(xué)校高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲.乙兩人同時從寢室到教室,甲一半路程步行,一半路程跑步,乙一半時間步行,一半時間跑步,如果兩人步行速度.跑步速度均相同,則()A.甲先到教室 B.乙先到教室C.兩人同時到教室 D.誰先到教室不確定2.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.103.在中,若,則()A. B. C. D.4.若集合A=x∈Nx-1≤1A.3 B.4 C.7 D.85.在等差數(shù)列中,,是方程的兩個根,則的前14項和為()A.55 B.60 C.65 D.706.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.7.已知向量,,若,則銳角α為()A.45° B.60° C.75° D.30°8.如圖,是的直觀圖,其中軸,軸,那么是()A.等腰三角形 B.鈍角三角形 C.等腰直角三角形 D.直角三角形9.已知等差數(shù)列中,,則公差()A. B. C.1 D.210.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分圖象如圖所示,則f(x)的解析式為()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+1二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則的值為.12.函數(shù)的最大值為.13.函數(shù)y=tan14.在空間直角坐標系中,點關(guān)于原點的對稱點的坐標為__________.15.已知向量,則與的夾角為______.16.在等差數(shù)列中,,,則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),設(shè)其最小值為(1)求;(2)若,求a以及此時的最大值.18.已知數(shù)列的前項和,且;(1)求它的通項.(2)若,求數(shù)列的前項和.19.已知的三個頂點,,.(1)求邊所在直線的方程;(2)求邊上中線所在直線的方程.20.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最值.21.在正△ABC中,AB=2,(t∈R).(1)試用,表示:(2)當?取得最小值時,求t的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

設(shè)兩人步行,跑步的速度分別為,().圖書館到教室的路程為,再分別表示甲乙的時間,作商比較即可.【詳解】設(shè)兩人步行、跑步的速度分別為,().圖書館到教室的路程為.則甲所用的時間為:.乙所用的時間,滿足+,解得.則===1.∴.故乙先到教室.故選:B.【點睛】本題考查了路程與速度、時間的關(guān)系、基本不等式的性質(zhì),屬于基礎(chǔ)題.2、B【解析】試題分析:把圓的方程化為標準方程得,所以圓心坐標為半徑,因為直線始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點與點的距離的平方,因為到直線的距離,所以的最小值為,故選B.考點:1、圓的方程及幾何性質(zhì);2、點到直線的距離公式及最值問題的應(yīng)用.【方法點晴】本題主要考查圓的方程及幾何性質(zhì)、點到直線的距離公式及最值問題的應(yīng)用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點到直線的距離解答的.3、A【解析】

由已知利用余弦定理即可解得的值.【詳解】解:,,,由余弦定理可得:,解得:,故選:A.【點睛】本題主要考查余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.4、A【解析】

先求出A∩B的交集,再依據(jù)求真子集個數(shù)公式求出,也可列舉求出?!驹斀狻緼=x∈Nx-1≤1A∩B=0,1,所以A∩B的真子集的個數(shù)為2【點睛】有限集合a1,a2,?5、D【解析】

根據(jù)根與系數(shù)之間的關(guān)系求出a5+a10,利用等差數(shù)列的前n項和公式及性質(zhì)進行求解即可.【詳解】∵,是方程的兩個根,可得,∴.故選D.【點睛】本題主要考查等差數(shù)列的前n項和公式的應(yīng)用,考查了等差數(shù)列的性質(zhì)的運用,根據(jù)根與系數(shù)之間的關(guān)系建立方程關(guān)系是解決本題的關(guān)鍵.6、C【解析】

根據(jù)扇形面積公式得到半徑,再計算扇形弧長.【詳解】扇形弧長故答案選C【點睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關(guān)鍵,意在考查學(xué)生的計算能力.7、D【解析】

根據(jù)向量的平行的坐標表示,列出等式,即可求出.【詳解】因為,所以,又為銳角,因此,即,故選D.【點睛】本題主要考查向量平行的坐標表示.8、D【解析】

利用斜二測畫法中平行于坐標軸的直線,平行關(guān)系不變這個原則得出的形狀.【詳解】在斜二測畫法中,平行于坐標軸的直線,平行關(guān)系不變,則在原圖形中,軸,軸,所以,,因此,是直角三角形,故選D.【點睛】本題考查斜二測直觀圖還原,解題時要注意直觀圖的還原原則,并注意各線段長度的變化,考查分析能力,屬于基礎(chǔ)題.9、C【解析】

利用通項得到關(guān)于公差d的方程,解方程即得解.【詳解】由題得.故選C【點睛】本題主要考查數(shù)列的通項的基本量的計算,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.10、D【解析】

由已知列式求得的值,再由周期求得的值,利用五點作圖的第二個點求得的值,即可得到答案.【詳解】由題意,根據(jù)三角函數(shù)的圖象,可得,解得,又由,解得,則,又由五點作圖的第二個點可得:,解得,所以函數(shù)的解析式為,故選D.【點睛】本題主要考查了由的部分圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的五點作圖法,以及三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

,故答案為3.12、【解析】略13、{【解析】

解方程12【詳解】由題得12x+故答案為{x|x≠2kπ+【點睛】本題主要考查正切型函數(shù)的定義域的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.14、【解析】

空間直角坐標系中,關(guān)于原點對稱,每個坐標變?yōu)樵瓉淼南喾磾?shù).【詳解】空間直角坐標系中,關(guān)于原點對稱,每個坐標變?yōu)樵瓉淼南喾磾?shù).點關(guān)于原點的對稱點的坐標為故答案為:【點睛】本題考查了空間直角坐標系關(guān)于原點對稱,屬于簡單題.15、【解析】

設(shè)與的夾角為,由條件,平方可得,由此求得的值.【詳解】設(shè)與的夾角為,,則由,平方可得,解得,∴,故答案為.【點睛】本題主要考查兩個向量的數(shù)量積的定義,向量的模的定義,已知三角函數(shù)值求角的大小,屬于中檔題.16、8【解析】

設(shè)等差數(shù)列的公差為,則,所以,故答案為8.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】

(1)利用同角三角函數(shù)間的基本關(guān)系化簡函數(shù)解析式后,分三種情況、和討論,根據(jù)二次函數(shù)求最小值的方法求出的最小值的值即可;(2)把代入到第一問的的第二和第三個解析式中,求出的值,代入中得到的解析式,利用配方可得的最大值.【詳解】(1)由題意,函數(shù)∵,∴,若,即,則當時,取得最小值,.若,即,則當時,取得最小值,.若即,則當時,取得最小值,,∴.(2)由(1)及題意,得當時,令,解得或(舍去);當時,令,解得(舍去),綜上,,此時,則時,取得最大值.【點睛】本題主要考查了利用二次函數(shù)的方法求三角函數(shù)的最值,要求熟練掌握余弦函數(shù)圖象與性質(zhì),其中解答中合理轉(zhuǎn)化為二次函數(shù)的圖象與性質(zhì)進行求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于中檔試題.18、(1)(2)【解析】

(1)由,利用與的關(guān)系式,即可求得數(shù)列的通項公式;(2)由(1)可得,利用乘公比錯位相減法,即可求得數(shù)列的前項和.【詳解】(1)由,當時,;當時,,當也成立,所以則通項;(2)由(1)可得,-,,兩式相減得所以數(shù)列的前項和為.【點睛】本題主要考查了數(shù)列和的關(guān)系、以及“錯位相減法”求和的應(yīng)用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎(chǔ),準確計算求和是關(guān)鍵,易錯點是在“錯位”之后求和時,弄錯等比數(shù)列的項數(shù),著重考查了的邏輯思維能力及基本計算能力等.19、(1)(2)【解析】

(1)由直線的兩點式方程求解即可;(2)先由中點坐標公式求出中點的坐標,再結(jié)合直線的兩點式方程求解即可.【詳解】(1)因為,,由直線的兩點式方程可得:邊所在直線的方程,化簡可得;(2)由,,則中點,即,則邊上中線所在直線的方程為,化簡可得.【點睛】本題考查了中點坐標公式,重點考查了直線的兩點式方程,屬基礎(chǔ)題.20、(1);(2)最大值為,最小值為.【解析】

(1)利用兩角和的正弦公式以及二倍角的余弦公式、兩角和的余弦公式將函數(shù)的解析式化簡為,然后解不等式可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由,可計算出,然后由余弦函數(shù)的基本性質(zhì)可求出函數(shù)在區(qū)間上的最大值和最小值.【詳解】(1),解不等式,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)當時,.當時,函數(shù)取得最大值;當時,函數(shù)取得最小值.【點睛】本題考查三角函數(shù)單調(diào)區(qū)間以及在定區(qū)間上最值的求解,解題時要利用三角恒等變換思想將三角函數(shù)的解析式化簡,并借助

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論